- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 等腰三角形的性质
- 根据等边对等角求角度
- 根据等边对等角证明
- 根据三线合一求解
- 根据三线合一证明
- 等腰三角形的定义
- 等腰三角形的判定
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=155°,则∠EDC的度数为( )


A.20° | B.20.5° | C.21° | D.22° |
如图,在△ABC中,AB=50cm,BC=30cm,AC=40cm.

(1)求证:∠ACB=90°
(2)求AB边上的高.
(3)点D从点B出发在线段AB上以2cm/s的速度向终点A运动,设点D的运动时间为t(s).
①BD的长用含t的代数式表示为 .
②当△BCD为等腰三角形时,直接写出t的值.

(1)求证:∠ACB=90°
(2)求AB边上的高.
(3)点D从点B出发在线段AB上以2cm/s的速度向终点A运动,设点D的运动时间为t(s).
①BD的长用含t的代数式表示为 .
②当△BCD为等腰三角形时,直接写出t的值.
如图,在
中,已知
,
是
边上的中线,点
是
边上一动点,点
是
上的一个动点.

(1)若
,求
的度数;
(2)若
,
,
,且
时,求
的长;
(3)在(
)的条件下,请直接写出
的最小值.









(1)若


(2)若





(3)在(

