数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.
(1)如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.
(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.
(应用)
(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的度数:___ ___ (写出其中两种情形即可)
(1)如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.
(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.
(应用)
(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的度数:___ ___ (写出其中两种情形即可)

阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若
是奇异三角形,其中两边的长分别为
、
,则第三边的长为 .
(3)如图,
中,
,以
为斜边作等腰直角三角形
,点
是
上方的一点,且满足
.求证:
是奇异三角形.
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若



(3)如图,









如图,在五边形 ABCDE中,AB=AC=AD=AE,且AB//ED,∠EAB=120°,则∠DCB的度数是( )


A.120° | B.130° | C.140° | D.150° |
如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,BE和CE交于点E,过点E作MN∥BC交AB于点M,交AC于点N.若MN=8,则BM+CN的长为( )


A.6.5 | B.7.2 | C.8 | D.9.5 |
等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是( )
A.140°或44°或80° | B.20°或80° |
C.44°或80° | D.140° |
野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()


A.1种 | B.2种 | C.3种 | D.4种 |