- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- + 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
通过对下面数学模型的研究学习,解决下列问题:
(模型呈现)(1)如图1,
,
,过点
作
于点
,过点
作
于点
.由
,得
.又
,可以推理得到
.进而得到
,
.我们把这个数学模型称为“
字”模型或“一线三等角”模型;

(模型应用)(2)①如图2,
,
,
,连接
,
,且
于点
,
与直线
交于点
.求证:点
是
的中点;

②如图3,在平面直角坐标系
中,点
的坐标为
,点
为平面内任一点.若
是以
为斜边的等腰直角三角形,请直接写出点
的坐标.
(模型呈现)(1)如图1,
















(模型应用)(2)①如图2,













②如图3,在平面直角坐标系








如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;
(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;
(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
(1)模型建立:
如图,等腰直角三角形
中,
,
,直线
经过点
,过
作
于
,过
作
于
.求证:
;

(2)模型应用:
①如图,一次函数
的图象分别与
轴、
轴交于点
、
,以线段
为腰在第一象限内作等腰直角三角形
,则
点的坐标为___________(直接写出结果)

②如图,在
和
中,
,
,
,连接
、
,作
于
点,延长
与
交于点
,求证:
是
的中点.
如图,等腰直角三角形













(2)模型应用:
①如图,一次函数









②如图,在















如图,在△ABC中,∠ACB=90º,∠ABC=45 º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.
(1)如图①,求证:EF=AE+CF.
(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.
(1)如图①,求证:EF=AE+CF.
(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.

如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=_____.

如图1,在长方形
中,
,
,点
在线段
上以
的速度由
向终点
运动,同时,点
在线段
上由点
向终点
运动,它们运动的时间为
.
(解决问题)
若点
的运动速度与点
的运动速度相等,当
时,回答下面的问题:
(1)
;
(2)此时
与
是否全等,请说明理由;

(3)求证:
;
(变式探究)
若点
的运动速度为
,是否存在实数
,使得
与
全等?若存在,请直接写出相应的
的值;若不存在,请说明理由. 













(解决问题)
若点



(1)

(2)此时



(3)求证:

(变式探究)
若点






