- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- + 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在△ABC中,∠ACB=90
,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于


A. (1)当直线MN如图(1)的位置时, 求证:①△ADC≌△CEB ②DE=AD+BE (2)当直线MN绕点C旋转到图(2)的位置时,直接写出DE、AD、BE三者之间的关系 . |

如图,线段AB=8cm,射线AN⊥AB,垂足为点A,点C是射线上一动点,分别以AC,BC为直角边作等腰直角三角形,得△ACD与△BCE,连接DE交射线AN于点M,则CM的长为__________.

如图 1,在平面直角坐标系中,A,B,D 三点的坐标是(0,2),(-2,0),(1,0),点C 是 x 轴下方一点,且 CD⊥AD,∠BAD+∠BCD=180°,AD=CD

(1)求证:BD 平分∠ABC
(2)求四边形 ABCD 的面积
(3)如图 2,BE 是∠ABO 的邻补角的平分线,连接 AE,OE 交 AB 于点 F,若∠AEO=45°,求证:AF=AO.

(1)求证:BD 平分∠ABC
(2)求四边形 ABCD 的面积
(3)如图 2,BE 是∠ABO 的邻补角的平分线,连接 AE,OE 交 AB 于点 F,若∠AEO=45°,求证:AF=AO.
如图,在平面直角坐标系中,将直角三角形的顶点放在P(5,5)处,两直角边与坐标轴交点为A,B,则OA+OB的长是_____________.

如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连结BE,过C点作CF⊥BE,垂足为F.

(1)线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.
结论:BF= ;
(2)若AB=6,AE=8,求点A到点C的距离.

(1)线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.
结论:BF= ;
(2)若AB=6,AE=8,求点A到点C的距离.
已知:如图(1),在平面直角坐标系中,点A、点B分別在x轴、y轴的正半轴上,点C在第一象限,∠ACB=90°,AC=BC,点A坐标为(m,0),点C横坐标为n,且m2+n2﹣2m﹣8n+17=0.

(1)分別求出点A、点B、点C的坐标;
(2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BC于E,交边AC于F,①求证:DE=DF;②求证:S四边形DECF=
S△ABC;
(3)在坐标平面内有点G(点G不与点A重合),使得△BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.

(1)分別求出点A、点B、点C的坐标;
(2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BC于E,交边AC于F,①求证:DE=DF;②求证:S四边形DECF=

(3)在坐标平面内有点G(点G不与点A重合),使得△BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.
如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.

(1)若AB∥x轴,如图1,求t的值;
(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.

(1)若AB∥x轴,如图1,求t的值;
(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.
探究:如图①,在
中,
,
,直线
经过点
,且点
在直线
的同侧,过点
分别作直线
的垂线,垂足分别为点
.求证:
.
应用:如图②,在
中,
,
,直线
经过点
,且点
在直线
的异侧,过点
分别作直线
的垂线,垂足分别为点
.直接写出线段
之间的相等关系.


图① 图②











应用:如图②,在













图① 图②
在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,连接DE.

(1)如图1,当△ABC为锐角三角形时,
①依题意补全图形,猜想∠BAE与∠BCD之间的数量关系并证明;
②用等式表示线段AE,CE,DE的数量关系,并证明;
(2)如图2,当∠ABC为钝角时,依题意补全图形并直接写出线段AE,CE,DE的数量关系.

(1)如图1,当△ABC为锐角三角形时,
①依题意补全图形,猜想∠BAE与∠BCD之间的数量关系并证明;
②用等式表示线段AE,CE,DE的数量关系,并证明;
(2)如图2,当∠ABC为钝角时,依题意补全图形并直接写出线段AE,CE,DE的数量关系.