- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- + 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,平面直角坐标系中,A是x轴负半轴上一定点,一动点B从原点出发,沿y轴正半轴运动,以B为直角顶点,作等腰直角三角形△ABC.

(1)若B点运动2秒钟,C点坐标为(2,-2),求A点的坐标;
(2)如图,B点从(1)中的位置出发保持运动速度不变,再运动2秒钟.E在原B点上,连AE,OD⊥AE,交x轴的平行线DB于D点,求D点坐标

(3)点B从(2)的位置出发继续运动,如图AC交y轴于M,MN⊥y轴,且BM=MN,连CN,试问:AB和CN是否有某种确定的位置关系,并证明.

(1)若B点运动2秒钟,C点坐标为(2,-2),求A点的坐标;
(2)如图,B点从(1)中的位置出发保持运动速度不变,再运动2秒钟.E在原B点上,连AE,OD⊥AE,交x轴的平行线DB于D点,求D点坐标

(3)点B从(2)的位置出发继续运动,如图AC交y轴于M,MN⊥y轴,且BM=MN,连CN,试问:AB和CN是否有某种确定的位置关系,并证明.

(问题提出)
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

(深入探究)
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

(深入探究)
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
已知,△ABC 中,∠BAC=90°,AB=AC,过 A 任作一直线 l,作 BD⊥l于 D,CE⊥l于 E,观察三条线段 BD,CE,DE 之间的数量关系.
(1)如图 1,当 l 经过 BC 中点时,此时 BD CE;
(2)如图 2,当 l 不与线段 BC 相交时,BD,CE,DE 三者的数量关系为 ,并证明你的结论.
(3 )如图 3 ,当 l 与线段 BC 相交,交点靠近 B 点时,BD ,CE ,DE 三者的数量关系为 .证明你的结论,并画图直接写出交点靠近 C 点时,BD,CE,DE 三者的数最关系为 .
(1)如图 1,当 l 经过 BC 中点时,此时 BD CE;
(2)如图 2,当 l 不与线段 BC 相交时,BD,CE,DE 三者的数量关系为 ,并证明你的结论.
(3 )如图 3 ,当 l 与线段 BC 相交,交点靠近 B 点时,BD ,CE ,DE 三者的数量关系为 .证明你的结论,并画图直接写出交点靠近 C 点时,BD,CE,DE 三者的数最关系为 .

在
中,
,
,点
在直线
上(
,
除外),
的垂线
与
的垂线
交于点
,研究
和
的数量关系.
(1)在探究
,
的关系时,运用“从特殊到一般”的数学思想,发现当点
是
的中点时,只需要取
边的中点
(如图),通过推理证明就可以得到
的数量关系,请你按照这种思路直接写出
和
的数量关系:_____________________

(2)当点
是线段
上(
,
除外)任意一点(其它条件不变),上面得到的结论是否仍然成立呢?证明你的结论;

(3)点
在线段
的延长线上,上面得到的结论是否仍然成立呢?在下图中画出图形,并证明你的结论.















(1)在探究










(2)当点





(3)点



如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )


A.50 | B.44 | C.38 | D.32 |
如图,一个等腰直角三角形零件放置在一凹槽内,顶点A.B.C分别落在凹槽内壁上,测得AD=5cm,BE=9cm,则该零件的面积为_______ 

如图,
中, BP平分∠ABC, AP⊥BP于P,连接PC,若
的面积为3.5cm2,
的面积为4.5cm2,则
的面积为( ).






A.0.25cm2 | B.0.5 cm2 | C.1cm2 | D.1.5cm2 |
如图,AO
OM,OA=8,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度____.

