- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- + 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,D为AB边上一点,且BD=3,将△BCD绕着点C顺时针旋转60°到△B′CD′,则AD′的长为_____.

已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE

(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;
(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.

(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;
(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.
如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.

(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.


(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=

(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
(1)如图 1 所示,△ ABC 和△ AEF 为等边三角形,点 E 在△ ABC 内部,且 E 到点 A、B、C 的距离分别为 3、4、5,求∠AEB 的度数.

(2)如图 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 为 BC 上的两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°,得到△AC


(2)如图 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 为 BC 上的两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°,得到△AC
A.求证:MN![]() ![]() ![]() |
(1)问题发现,

如图1,在
中,
,
是
上一点,将点
绕点
顺时针旋转50°得到点
,则
与
的数量关系是________________________。
(2)类比探究
如图2,将(1)中的
绕点
在平面内旋转,(1)中的结论是否成立,并就图2的情形说明理由。
(3)拓展延伸
绕点
在平面旋转,当旋转到
时,请直接写出
度数。

如图1,在









(2)类比探究
如图2,将(1)中的


(3)拓展延伸




在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.

(1)如图1,若点F与点A重合,求证:AC=BC.
(2)如图2,若点F在线段CA的延长线上,∠DAF=∠DBA,请判断线段AF与BE的数量关系,并说明理由.

(1)如图1,若点F与点A重合,求证:AC=BC.
(2)如图2,若点F在线段CA的延长线上,∠DAF=∠DBA,请判断线段AF与BE的数量关系,并说明理由.
如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,B
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
A. |
(2)连接DE,若∠ADC=105°,求∠BED的度数.

如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°

(1)求证:BD⊥CD;
(2)若BD=6,CD=2,求四边形ABCD的面积.

(1)求证:BD⊥CD;
(2)若BD=6,CD=2,求四边形ABCD的面积.
已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF,CF.
(1)如图1,点D在AC上,请你判断此时线段DF,CF的关系,并证明你的判断;
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45度时,若AD=DE=2,AB=6,求此时线段CF的长.
(1)如图1,点D在AC上,请你判断此时线段DF,CF的关系,并证明你的判断;
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45度时,若AD=DE=2,AB=6,求此时线段CF的长.
