刷题首页
题库
初中数学
题干
如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-24 09:41:28
答案(点此获取答案解析)
同类题1
如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
同类题2
正方形
中,
为
边上一点,且
,将
绕点
顺时针旋转
得到EF,连接
,
,则
_____.
同类题3
如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。求证:DB平分∠ADE.
同类题4
如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是边BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③四边形AEPF的面积=△ABC的面积的一半,④当EF最短时,EF=AP,上述结论始终正确的个数为( )
A.1
B.2
C.3
D.4
同类题5
如图,已知点 P(2m﹣1,6m﹣5)在第一象限角平分线 OC 上,一直角顶点
P
在
OC
上,角两边与
x
轴
y
轴分别交于
A
点,
B
点,则:(1)点
P
的坐标为______________;(2)
OA
+
BO
=_____.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型