BD、CE分别是△ABC的边AC、AB上的高,P在BD的延长线上,且BP=AC,点Q在CE上,CQ=A
A.![]() 求证:(1)AP=AQ ; (2)AP⊥AQ. |
如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,则∠3=________ .

(1)课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(2)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.
如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(2)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.

在△ABC中,AB=AC,点D是射线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.

(1)若∠BAC=90°.
①如图1,当点D在线段BC上时,∠BCE= °;
②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立?请说明理由;
(2)若∠BAC=75°,点D在射线BC上,∠BCE= °;
(3)若点D在直线BC上移动,其他条件不变.设∠BAC=α,∠BCE=β,α与β有怎样的数量关系?请直接写出你的结论.

(1)若∠BAC=90°.
①如图1,当点D在线段BC上时,∠BCE= °;
②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立?请说明理由;
(2)若∠BAC=75°,点D在射线BC上,∠BCE= °;
(3)若点D在直线BC上移动,其他条件不变.设∠BAC=α,∠BCE=β,α与β有怎样的数量关系?请直接写出你的结论.
如图,要测量河流
的长,因为无法测河流附近的点
,可以在
线外任取一点
,在
的延长线上任取一点
,连结
和
,并且延长
到点
,使
;延长
到点
,使
连结
,并延长
到点
,使点
,
,
在同一直线上.证明:测量出线段
的长就是河流
的长.






















