- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连接AD,AC,BC,BD,若AD=AC=AB,则下列结论:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等边三角形,④∠BCD的度数为150°,其中正确的个数是( )


A.1 | B.2 | C.3 | D.4 |
如图(1),在
和
中,
为
边
上一点,
平分
,
,
.

(1)求证:
(2)如图(2),若
,连接
交
于
,
为边
上一点,满足
,连接
交
于
. ①求
的度数;
②若
平分
,试说明:
平分
.










(1)求证:

(2)如图(2),若











②若




如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF、DE,若E是BC的中点.
求证:CF=DE.
求证:CF=DE.

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,要测量工件内槽宽AB,只要测量CD的长度即可,该做法的依据是____________

如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D重合.

(1)求证:△ACE为等腰三角形;
(2)若AB=6,求AE的长.

(1)求证:△ACE为等腰三角形;
(2)若AB=6,求AE的长.
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C. E在同一条直线上,连结DC.

(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.

(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.