- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在平面直角坐标系中,已知点A在y轴的正半轴上,点B在第二象限,AO=a,AB=b,BO与x轴正方向的夹角为150°,且a2−b2+a−b=0.

(1)试判定△ABO的形状;
(2)如图1,若BC⊥BO,BC=BO,点D为CO的中点,AC、BD交于E,求证:AE=BE+CE;
(3)如图2,若点E为y轴的正半轴上一动点,以BE为边作等边△BEG,延长GA交x轴于点P,问:AP与AO之间有何数量关系?试证明你的结论.

(1)试判定△ABO的形状;
(2)如图1,若BC⊥BO,BC=BO,点D为CO的中点,AC、BD交于E,求证:AE=BE+CE;
(3)如图2,若点E为y轴的正半轴上一动点,以BE为边作等边△BEG,延长GA交x轴于点P,问:AP与AO之间有何数量关系?试证明你的结论.
已知如图,在△ABC 中,AB=AC,D、E 是 BC 上异于 B、C 的任意两点,连接 AD 和 AE,且AD=A

A. (1)图中有几组全等三角形?请分别写出来; (2)选择其中的一组证明两三角形全等. |

如图,在△ABC中,AB=AC,AD是BC边上的高,E为AD上一点,连接BE,CE,那么图中共有全等三角形( )


A.1 对 | B.2 对 | C.3 对 | D.4 对 |
已知△ABC与△CEF均为等腰直角三角形,∠ABC=∠CFE=90°,连接AE,点G是AE中点,连接BG和GF.
(1)如图1,当△CEF中E、F落在BC、AC边上时,探究FG与BG的关系;
(2)如图2,当△CEF中F落在BC边上时,探究FG与BG的关系.
(1)如图1,当△CEF中E、F落在BC、AC边上时,探究FG与BG的关系;
(2)如图2,当△CEF中F落在BC边上时,探究FG与BG的关系.

如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过点A作AE//BC与过点D作CD的垂线交于点E.

(1)如图1,若CE交AD于点F,BC=6,∠B=30°,求AE的长;
(2)如图2,求证AE+CE=BC.

(1)如图1,若CE交AD于点F,BC=6,∠B=30°,求AE的长;
(2)如图2,求证AE+CE=BC.
如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=C

A. (1)求证:△ABC≌△DE | B. (2)若∠A=65°,求∠AGF的度数. |

如图1,点P.Q分别是边长为4cm的等边△ABC边AB.BC上的点,点P从顶点A向B出发,点Q从顶点B同时出发向C点运动,且它们的速度都为1cm/s,

(1)连接AQ.CP交于点M,则在P.Q运动的过程中,△ABQ与△CAP全等吗?请说明理由;
(2)∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
(3)几秒后△PBQ是直角三角形?
(4)如图2,若点P.Q在运动到终点后继续在射线AB.BC上运动,直线AQ.CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

(1)连接AQ.CP交于点M,则在P.Q运动的过程中,△ABQ与△CAP全等吗?请说明理由;
(2)∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
(3)几秒后△PBQ是直角三角形?
(4)如图2,若点P.Q在运动到终点后继续在射线AB.BC上运动,直线AQ.CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.