- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)

如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若AC=24,AB=30,且
=216,则△ABD的面积是( )




A.105 | B.120 |
C.135 | D.115 |
下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角度平分线;③做一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中做法错误的是_____.

数学课上,老师提出如下问题:已知点A,B,C是不在同一直线上三点,求作一条过点C的直线l,使得点A,B到直线l的距离相等.
小明的作法如下:
①连接AB;
②分别以A,B为圆心,以大于
AB为半径画弧,两弧交于M、N两点;
③作直线MN,交线段AB于点O;
④作直线CO,则CO就是所求作的直线l.

老师肯定了小明的作法,根据上面的作法回答下列问题:
(1)小明利用尺规作图作出的直线MN是线段AB的 ;点O是线段AB的 ;
(2)要证明点A,点B到直线l的距离相等,需要在图中画出必要的线段,请在图中作出辅助线,并说明线段 的长是点A到直线l的距离,线段 的长是点B到直线l的距离;
(3)证明点A,B到直线l的距离相等.
小明的作法如下:
①连接AB;
②分别以A,B为圆心,以大于

③作直线MN,交线段AB于点O;
④作直线CO,则CO就是所求作的直线l.

老师肯定了小明的作法,根据上面的作法回答下列问题:
(1)小明利用尺规作图作出的直线MN是线段AB的 ;点O是线段AB的 ;
(2)要证明点A,点B到直线l的距离相等,需要在图中画出必要的线段,请在图中作出辅助线,并说明线段 的长是点A到直线l的距离,线段 的长是点B到直线l的距离;
(3)证明点A,B到直线l的距离相等.
下列说法正确的是( )
A.用直尺和圆规做一条线段的垂直平分线的过程,是用“到线段两端距离相等的点在这条线段的垂直平分线上” |
B.用直尺和圆规作一个角的平分线的过程,是用“边角边”构造了全等三角形 |
C.用直尺和圆规作一个角的平分线的过程,是用“到角的两边距离相等的点在这个角的平分线上” |
D.用直尺和圆规做一个角等于已知角的过程,是用“边角边”构造了全等三角形 |
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=3
,求AD的长.
(1)求证:BF=2AE;
(2)若CD=3

