- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.

求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.

(1)求证:△ADE≌△CDB;
(2)若BC=1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.

(1)求证:△ADE≌△CDB;
(2)若BC=1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()


A.50° | B.60° | C.70° | D.80° |
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是
的平分线上一点,若
,求证:
为等腰三角形.下面给出此问题一种证明的思路,你可以按这一思路继续完成证明,也可以选择另外的方法证明此结论.证明:在AB边上截取AE=MC,连接ME,在正方形ABCD中,
,AB=BC,
(下面请你连接AN,完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是
的平分线上一点,则当
时,试探究
是何种特殊三角形,并证明探究结论.
(3)若将(1)中的“正方形ABCD”改为“正
边形
,试猜想:当
的大小为多少时,(1)中的结论仍然成立?





(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是



(3)若将(1)中的“正方形ABCD”改为“正




如图,点A为∠MON的平分线上一点,过A任作一直线分别与∠MON的两边交于B,C两点,P为BC中点,过P作BC的垂线交于点D,∠BDC=50°,则∠MON=_____.

如图,在平行四边形ABCD中,AD>A
A.![]() (1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法); (2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接E | B.求证:四边形ABFE为菱形. |
如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=D

A. 求证:(1)△ABF≌△DCE; (2)四边形ABCD是矩形. |

如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6
,则另一直角边BC的长为_____.


如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=C
A. 求证:(1)△ABE≌△CDF; (2)四边形BFDE是平行四边形. ![]() |