- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是( )


A.![]() | B.![]() | C.![]() | D.![]() |
阅读下面材料:小明遇到这样一个问题:如图1,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE、DE分别平分∠DAB、∠CDA.求证:AD=AB+CD.
小明经探究发现,在AD上截取AF=AB,连接EF(如图2),从而可证△AEF≌△AEB,使问题得到解决.

(1)请你按照小明的探究思路,完成他的证明过程;
参考小明思考问题的方法,解决下面的问题:
(2)如图3,△ABC是等腰直角三角形,∠A=90°,点D为边AC上任意一点(不与点A、B重合),以BD为腰作等腰直角△BDE,∠DBE=90°.过点E作BE⊥EG交BA的延长线于点G,过点D作DF⊥BD,交BC于点F,连接FG,猜想EG、DF、FG之间的数量关系,并证明.
小明经探究发现,在AD上截取AF=AB,连接EF(如图2),从而可证△AEF≌△AEB,使问题得到解决.

(1)请你按照小明的探究思路,完成他的证明过程;
参考小明思考问题的方法,解决下面的问题:
(2)如图3,△ABC是等腰直角三角形,∠A=90°,点D为边AC上任意一点(不与点A、B重合),以BD为腰作等腰直角△BDE,∠DBE=90°.过点E作BE⊥EG交BA的延长线于点G,过点D作DF⊥BD,交BC于点F,连接FG,猜想EG、DF、FG之间的数量关系,并证明.
已知,在△ABC中,AC = B

(1)如图1.若CD= CE .求∠ABE的大小:
(2)如图2.∠ABC= ∠DEB= 60°.求证:AD+DC = BE.
A.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E。 |

(1)如图1.若CD= CE .求∠ABE的大小:
(2)如图2.∠ABC= ∠DEB= 60°.求证:AD+DC = BE.
如图,已知
,
,
,直角
的顶点
是
的中点,两边
,
分别交
,
于点
、
.给出以下四个结论:①
;②
;③
是等腰直角三角形;④
,上述结论始终正确的有________.(填序号)

















下列命题是真命题的是( )
A.顶角相等的两个等腰三角形全等 |
B.底角相等的两个等腰三角形全等 |
C.底角、顶角分别相等的两个等腰三角形全等 |
D.顶角和底边对应相等的两个等腰三角形全等 |