- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在四边形ABCD中,AD∥BC, E为CD的中点,连接 AE 、BE ,BE⊥AE,延长AE交BC的延长线于 F,求证:(1) BE平分∠ABC (2)AB=BC+AD

已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)(特殊情况,探索结论)
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:
AE DB(填“>”、“<”或“=”).
(2)(特例启发,解答题目)
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你将解答过程完整写下来).
(3)(拓展结论,设计新题)
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长.(请你画出相应图形,并直接写出结果).
(1)(特殊情况,探索结论)
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:
AE DB(填“>”、“<”或“=”).
(2)(特例启发,解答题目)
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你将解答过程完整写下来).
(3)(拓展结论,设计新题)
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长.(请你画出相应图形,并直接写出结果).

如图,已知AO=CO,那么添加下列一个条件后,仍无法判定△ABO ≌△CDO 的是( )


A.∠A=∠C | B.BO=DO | C.AB=CD | D.∠B=∠D |
如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点
A.若AD=BD,BC=8cm,DC=3cm.则 AE= _______________cm . |

已知:如图(1),在平面直角坐标系中,点A、点B分別在x轴、y轴的正半轴上,点C在第一象限,∠ACB=90°,AC=BC,点A坐标为(m,0),点C横坐标为n,且m2+n2﹣2m﹣8n+17=0.

(1)分別求出点A、点B、点C的坐标;
(2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BC于E,交边AC于F,①求证:DE=DF;②求证:S四边形DECF=
S△ABC;
(3)在坐标平面内有点G(点G不与点A重合),使得△BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.

(1)分別求出点A、点B、点C的坐标;
(2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BC于E,交边AC于F,①求证:DE=DF;②求证:S四边形DECF=

(3)在坐标平面内有点G(点G不与点A重合),使得△BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.