- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD中,点E是DC边上一点,DE=6,EC=3,点F在直线AB上,当线段CF的长为________时,把线段AE绕点A旋转,使点E恰好落在点F处.

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边中点,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F
(1)当点E在AC边上时(如图1),求证CE=BF
(2)在(1)的条件下,求证:
(3)当∠EDF绕D点旋转到图3的位置即点E、F分别在AC、CB边的延长线上时,上述(2)结论是否成立?若成立,请给予证明;若不成立,
又有怎样的数量关系?请写出你的猜想,不需证明.
(1)当点E在AC边上时(如图1),求证CE=BF
(2)在(1)的条件下,求证:

(3)当∠EDF绕D点旋转到图3的位置即点E、F分别在AC、CB边的延长线上时,上述(2)结论是否成立?若成立,请给予证明;若不成立,


在
中,
,点
为
的中点.
(1)如图1,E为线段DC上任意一点,将线段
绕点D逆时针旋转90°得到线段
,连接
,过点F作
,交直线
于点
.判断
与
的数量关系并加以证明;
(2)如图2,若
为线段
的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.




(1)如图1,E为线段DC上任意一点,将线段








(2)如图2,若



如图①所示,在三角形纸片
中,
,
,将纸片的一角折叠,使点
落在
内的点
处.
(1)若
,
________.
(2)如图①,若各个角度不确定,试猜想
,
,
之间的数量关系,直接写出结论.
②当点
落在四边形
外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,
,
,
之间又存在什么关系?请说明。

(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的
和是________.






(1)若


(2)如图①,若各个角度不确定,试猜想



②当点






(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的

如图,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C旋转,
(1)猜想BE与DG的关系,并证明你的结论;
(2)用含a、b的式子表示DE2+BG2.
(1)猜想BE与DG的关系,并证明你的结论;
(2)用含a、b的式子表示DE2+BG2.
