- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于F,连接DE.

(1)求证:△ADE≌△CED
(2)若AD=4,AB=8,求△ACF的面积.

(1)求证:△ADE≌△CED
(2)若AD=4,AB=8,求△ACF的面积.
如图,直角三角形DEF中,∠DFE=90°在直角三角形外面作正方形ABDE,CDFI,EFGH的面积分别为25,9,16.△AEH,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=( )


A.18 | B.21 | C.23.5 | D.26 |
如图,在长方形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为( )


A.4 | B.5 | C.![]() | D.![]() |
如图所示,在一个长方形的草坪ABCD中,修了一条A-E-C的小路.AB=12米,BC=16米,AE=11米.极个别同学为了走“捷径”,沿着AC路线行走,破坏草坪.
(1)请求出小路EC段的长度;
(2)请求出实际上这些同学仅仅少走了多少米?
(1)请求出小路EC段的长度;
(2)请求出实际上这些同学仅仅少走了多少米?

如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(Ⅰ)若设AP=x,则PC= ,QC= ;(用含x的代数式表示)
(Ⅱ)当∠BQD=30°时,求AP的长;
(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
(Ⅰ)若设AP=x,则PC= ,QC= ;(用含x的代数式表示)
(Ⅱ)当∠BQD=30°时,求AP的长;
(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G,若AB=8,BF=16,求CE的长;.

如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面积相等,其中错误的结论个数是( )


A.3个 | B.2个 | C.1个 | D.0个 |
在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:

问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为 ;
问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:
①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.
成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?

问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为 ;
问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:
①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.
成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?