- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从A出发沿射线AG以1cm/s的速度与运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).

(1)连接EF,当EF经过AC边的中点D是,求证△ADE≌△CDF;
(2)填空题:①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A,C,F,E为顶点的四边形为平行四边形.

(1)连接EF,当EF经过AC边的中点D是,求证△ADE≌△CDF;
(2)填空题:①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A,C,F,E为顶点的四边形为平行四边形.
一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为 ( )平方厘米.
A.50 | B.50或40 | C.50或40或30 | D.50或30或20 |
如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结D
A.![]() (1)证明DE∥CB; (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形. |
如图,在平行四边形ABCD中(BC>AB),过A作AF⊥BC,垂足为F,过C作CH⊥AB,垂足为H,交AF于G,点E为FC上一点,且GE⊥E
A.![]() (1)若FC=2BF=4,AB= ![]() (2)若AF=FC,F为BE中点,求证: ![]() |
如图,在平面直角坐标系中有一个长方形ABCO,C点在x轴上,A点在y轴上,B点坐标(8,4),将长方形沿EF折叠,使点B落到原点O处,点C落到点D处,则OF的长度是_____.
