- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是( )


A.74° | B.84° | C.86° | D.94° |
如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于( ).


A.140° | B.210° | C.220° | D.320° |
如图,已知矩形ABCD,E,F分别是边AB,CD的中点,M,N分别是边AD,AB上两点,将△AMN沿MN对折,使点A落在点E上.若AB=a,BC=b,且N是FB的中点,则
的值为____.


已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过C、E两点.
(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G

(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G
A. (3)在(2)的条件下求四边形AGFE的面积. |

如图,正方形ABCD的边长为6,点E、F分别在AB、AD上,若CE=3
,且∠ECF=45°,则AF的长为( )



A.4 | B.3 | C.2.5 | D.2 |
已知:如图,平行四边形ABCD的边AD=2AB,点E、A、B、F在一条直线上,且AE=BF=AB,EC交AD于M,FD交BC于N.

(1) △AEM≌△DCM吗?说明理由.
(2) 四边形CDMN是菱形吗?说明理由.

(1) △AEM≌△DCM吗?说明理由.
(2) 四边形CDMN是菱形吗?说明理由.
在正方形ABCD中,AB=AD,∠BAD=90°,P是CD边上一点,连结PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F,如图①

(1)求证:BE=DF+EF;
(2)若点P在DC的延长线上,如图②,上述结论还成立吗?如果成立请写出证明过程;如果不成立,请写出正确结论并加以证明.
(3)若点P在CD的延长线上,如图③,那么这三条线段的数量关系是 .(直接写出结果)

(1)求证:BE=DF+EF;
(2)若点P在DC的延长线上,如图②,上述结论还成立吗?如果成立请写出证明过程;如果不成立,请写出正确结论并加以证明.
(3)若点P在CD的延长线上,如图③,那么这三条线段的数量关系是 .(直接写出结果)
以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF.

(1)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.
(2)试探索BE和CF有什么数量关系和位置关系?并说明理由.

(1)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.
(2)试探索BE和CF有什么数量关系和位置关系?并说明理由.