刷题首页
题库
初中数学
题干
以锐角△
ABC
的边
AC
、
AB
为边向外作正方形
ACDE
和正方形
ABGF
,连结
BE
、
CF
.
(1)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.
(2)试探索
BE
和
CF
有什么数量关系和位置关系?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-11 12:34:45
答案(点此获取答案解析)
同类题1
已知点C是线段AB上一点,在线段AB的同侧作△CAD和△CBE,直线BD和AE相交于点F,CA=CD,CB=CE,∠ACD=∠BCE。
(1)如图①,若∠ACD=60
0
,则∠AFB=___________;若∠ACD=
,则∠AFB=___________。
(2)如图②,将图①中的△CAD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),试探究∠AFB与
的数量关系,并说明理由。
同类题2
建立模型:
如图1,等腰Rt△
ABC
中,∠
ABC
=90°,
CB
=
BA
,直线
ED
经过点
B
,过
A
作
AD
⊥
ED
于
D
,过
C
作
CE
⊥
ED
于
E
.则易证△
ADB
≌△
BE
A.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段
AB
和直角∠
ABC
转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点
A
(0,4),点
B
(3,0),△
ABC
是等腰直角三角形.
①若∠
ABC
=90°,且点
C
在第一象限,求点
C
的坐标;
②若
AB
为直角边,求点
C
的坐标;
(2)如图3,长方形
MFNO
,
O
为坐标原点,
F
的坐标为(8,6),
M
、
N
分别在坐标轴上,
P
是线段
NF
上动点,设
PN
=
n
,已知点
G
在第一象限,且是直线
y
=2
x
一6上的一点,若△
MPG
是以
G
为直角顶点的等腰直角三角形,请直接写出点
G
的坐标.
同类题3
(提出问题)如图1,在等边三角形
ABC
内一点
P
,
PA
=3,
PB
=4,
PC
=5.求∠
APB
的度数?小明提供了如下思路:
如图2,将△
APC
绕
A
点顺时针旋转60°至△
AP
'
B
,则
AP
'=
AP
=3,
P
'
C
=
PB
=4,∠
P
'
AC
=∠
PAB
,所以∠
P
'
AC
+∠
CAP
=∠
PAC
+∠
BAP
,即∠
P
'
AP
=∠
BAC
=60° ,所以△
AP
'
P
为等边三角形 ,所以∠
A
P
'
P
=60° ,
……按照小明的解题思路,
易求得∠
APB
=
;
(尝试应用)
如图3,在等边三角形
ABC
外一点
P
,
PA
=6,
PB
=10,
PC
=8.求∠
APC
的度数?
(解决问题)
如图4,平面直角坐标系
xoy
中,直线
AB
的解析式为
y
=-
x
+
b
(
b
>0),在第一象限内一点
P
,满足
PB
:
PO
:
PA
=1:2:3,则∠
BPO
=
度(直接写出答案)
同类题4
阅读理解题
(1)阅读理解:如图①,等边
内有一点
,若点
到顶点
,
,
的距离分别为3,4,5,求
的大小.
思路点拨:考虑到
,
,
不在一个三角形中,采用转化与化归的数学思想,可以将
绕顶点
逆时针旋转
到
处,此时
,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出
的度数.请你写出完整的解题过程.
(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:
已知如图②,
中,
,
,
、
为
上的点且
,
,
,求
的大小.
(3)能力提升:如图③,在
中,
,
,
,点
为
内一点,连接
,
,
,且
,请直接写出
的值,即
______.
同类题5
如图1,
为等腰三角形,
,点
在线段
上(不与
重合),以
为腰长作等腰直角
,
于
.
(1)求证:
;
(2)连接
交
于
,若
,求
的值.
(3)如图2,过
作
于
的延长线于点
,过
点作
交
于
,连接
,当点
在线段
上运动时(不与
重合),式子
的值会变化吗?若不变,求出该值;若变化,请说明理由..
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型