- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、C

A.则∠EDC是多少度. |

如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接D
A.![]() (1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形. |
分别以△ABC的各边为一边向三角形外部作正方形,若这三个正方形的面积分别为6cm2、8cm2、10cm2,则△ABC_____直角三角形.(填“是”或“不是”)
(1)如图1,将长方形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=48°,则∠DBE的度数为_______.
(2)小明手中有一张长方形纸片ABCD,AB=12,AD=27.
(画一画)
如图2,点E在这张长方形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,).
(算一算)
如图3:点F在这张长方形纸片的边BC上,将纸片折叠,使FB落在线段FD上,折痕为GF,点A、B分别落在点E、H处,若△DCF的周长等于48,求DH和AG的长.
(2)小明手中有一张长方形纸片ABCD,AB=12,AD=27.
(画一画)
如图2,点E在这张长方形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,).
(算一算)
如图3:点F在这张长方形纸片的边BC上,将纸片折叠,使FB落在线段FD上,折痕为GF,点A、B分别落在点E、H处,若△DCF的周长等于48,求DH和AG的长.

如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM; ②△EOB≌△CMB;③MB:OE=3:2;④四边形EBFD是菱形.其中正确结论是( )


A.①②③ | B.②③④ | C.①④ | D.①③④ |
如图1,在
ABC中,
,
,点D是AB中点,

(1)点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接B




(1)点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接B
A. (i)求证:△BCD为等边三角形; (ii)随着点E位置的变化, ![]() ![]() (2)DP ![]() ![]() |
已知:如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=45°,CE是AB边上的中线.

(1)若AD=1,请计算BC的长;
(2)求证CD=
AB;
(3)若CG=EG,求证:DG⊥CE.

(1)若AD=1,请计算BC的长;
(2)求证CD=

(3)若CG=EG,求证:DG⊥CE.
(1)如图1,利用网格线用三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;
(2)图2是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.请在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上.

(2)图2是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.请在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上.

