- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 相交线及其所成的角
- 平行线及其判定
- + 平行线的性质
- 平行线的性质
- 平行线性质的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,∠AOB的一边OA为平面镜,∠AOB=39°38′,在OB上有一点E,从E点射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为( )


A.100°44′ | B.79°16′ | C.80°16′ | D.78°16′ |
已知直线AB∥CD,直线EF与AB、CD分别相交于点E、F.
(1)如图1,若∠1=60°,求∠2、∠3的度数;
(2)若点
是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系:
①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式).

解:如图2,过点P作MN∥AB,
则∠EPM=∠PEB( )
∵AB∥CD(已知),MN∥AB(作图),
∴MN∥CD( )
∴∠MPF=∠PFD( )
∴ =∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD.
②当点P在图3的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系: ;
(1)如图1,若∠1=60°,求∠2、∠3的度数;
(2)若点

①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式).

解:如图2,过点P作MN∥AB,
则∠EPM=∠PEB( )
∵AB∥CD(已知),MN∥AB(作图),
∴MN∥CD( )
∴∠MPF=∠PFD( )
∴ =∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD.
②当点P在图3的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系: ;
一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②如果BC∥AD,则有∠2=45°;③∠BAE+∠CAD随着∠2的变化而变化;④如果∠2=30°,那么∠4=45°;正确的( )


A.①②③ |
B.①②④ |
C.①③④ |
D.①②③④ |
已知AB∥C

A. (1)如图1,EOF是直线AB、CD间的一条折线,猜想∠1、∠2、∠3的数量关系,并说明理由; (2)如图2,若点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DF所在直线交于点E,若∠ADC=α,∠ABC=β,求∠BED的度数(用含有α、β的式子表示); (3)在(2)的前提下将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ADC=α,∠ABC=β,求∠BED的度数(用含有α、β的式子表示). |

(1)如图①,直线AB//CD,试确定∠B,∠BPC, ∠C之间的数量关系:
(2)如图②,直线AB//C
(3)如图③,若∠A=
(0<
<180°,且
≠135°),点B点C分别在∠A的两边上,分别过点B和点C作直线
和
.使得,
、
分别与AB, AC的夹角为
.且
和
交于点O,请直接写出∠BOC的度数.
(2)如图②,直线AB//C
A. ∠ABP与∠DCP的平分线相交于点P1,请确定∠P与∠P1的数量关系; |










