建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.
甲,乙两人分别从A,B两地出发相向而行,
分别表示甲,乙两人离B地的距离
与行走时间
之间的关系,设甲,乙行走的速度分别是
和
,则( ).







A.![]() | B.![]() | C.![]() | D.![]() |
如图,在平面直角坐标系中,点
,连接
.将
沿过点
的直线折叠,使点
落在
轴上的点
处,折痕所在的直线交
轴正半轴于点
,求:
(1)点
的坐标;
(2)直线
的函数表达式。









(1)点

(2)直线


在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km), y1、y2与x的函数关系如图所示.

(1)填空:A、C两港口间的距离为_______km,
_______;
(2)求图中点P的坐标;
(3)若两船的距离不超过8km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

(1)填空:A、C两港口间的距离为_______km,

(2)求图中点P的坐标;
(3)若两船的距离不超过8km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
如图①,四边形OACB为长方形,A(﹣6,0),B(0,4),直线l为函数y=﹣2x﹣5的图象.

(1)点C的坐标为 ;
(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P的坐标;
小明的思考过程如下:
第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;
第二步:证明△MPA≌△NBP;
第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.
请你根据小明的思考过程,写出第二步和第三步的完整解答过程;
(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.

(1)点C的坐标为 ;
(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P的坐标;
小明的思考过程如下:
第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;
第二步:证明△MPA≌△NBP;
第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.
请你根据小明的思考过程,写出第二步和第三步的完整解答过程;
(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.
如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数
的图象交点为C(m,4).

(1)求一次函数
的解析式;
(2)求△BOC的面积;
(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为 。


(1)求一次函数

(2)求△BOC的面积;
(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为 。
甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m,先到终点的人在终点休息等候对方.已知甲先出发4 min,在整个步行过程中,甲、乙两人的距离y m与甲出发的时间tmin之间的函数关系如图所示.

(1)甲步行的速度为 m/min;
(2)解释点P(16,0)的实际意义;
(3)乙走完全程用了多少分钟?
(4)乙到达终点时,甲离终点还有多少米?

(1)甲步行的速度为 m/min;
(2)解释点P(16,0)的实际意义;
(3)乙走完全程用了多少分钟?
(4)乙到达终点时,甲离终点还有多少米?
周末,甲从家出发前往与家相距
千米的旅游景点旅游,以
千米/时的速度步行
小时后,改骑自行车以
千米/时的速度继续向目的地出发,乙在甲前面
千米处,在甲出发
小时后开车追赶甲,两人同时到达目的地.设甲、乙两人离甲家的距离
(千米)与甲出发的时间
(小时)之间的函数关系如图所示.
(1)求乙的速度;
(2)求甲出发多长时间后两人第一次相遇;
(3)求甲出发几小时后两人相距
千米. .








(1)求乙的速度;
(2)求甲出发多长时间后两人第一次相遇;
(3)求甲出发几小时后两人相距


如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OAB
A.![]() (1)求点A、C的坐标; (2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式; (3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由. |
如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-
x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点
(1)写出下列各点的坐标:点A( , )、点B( , )、点C( , );
(2)若S△COP=S△COA,请求出点P的坐标;
(3)当PA+PC最短时,求出直线PC的解析式.

A.点P是y轴上一点. |

(1)写出下列各点的坐标:点A( , )、点B( , )、点C( , );
(2)若S△COP=S△COA,请求出点P的坐标;
(3)当PA+PC最短时,求出直线PC的解析式.