小玲和弟弟小东分别从家和图书馆同时当发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数函象如图所示.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式
(3)求两人相遇的时间.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式
(3)求两人相遇的时间.

如图,直线y=﹣x+4与两坐标轴交于P,Q两点,在线段PQ上有一动点A(点A不与P,Q重合),过点A分别作两坐标轴的垂线,垂足为B,C,则下列说法不正确的是( )


A.点A的坐标为(2,2)时,四边形OBAC为正方形 |
B.在整个运动过程中,四边形OBAC的周长保持不变 |
C.四边形OBAC面积的最大值为4 |
D.当四边形OBAC的面积为3时,点A的坐标为(1,3) |
如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点

A.过点C且与y=2x平行的直线交y轴于点 | B. (1)求直线CD的解析式; (2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围. |

小张到老王的果园里一次性采购一种水果,他俩商定:小张的采购价
(元/吨)与采购量
(吨)之间函数关系的图象如图中的折线段
所示(不包含端点
,但包含端点
).
(1)求
与
之间的函数关系式,并写出
的取值范围;
(2)已知老王种植水果的成本是
元/吨,那么小张的采购量为多少时,老王在这次买卖中所获的利润
最大?最大利润是多少?





(1)求



(2)已知老王种植水果的成本是



某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.
(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.
(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?
(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.
(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?
如图,在平面直角坐标系中,一次函数y=﹣
x+2的图象交x轴、y轴分别于点A,B,交直线y=kx于P.
(1)求点A、B的坐标;
(2)若OP=PA,求P点坐标及k的值.
(3)在(2)的条件下,C是直线BP上一动点,CE⊥x轴于E,交直线DP于D,若CD=3ED,直接写出C点的坐标.

(1)求点A、B的坐标;
(2)若OP=PA,求P点坐标及k的值.
(3)在(2)的条件下,C是直线BP上一动点,CE⊥x轴于E,交直线DP于D,若CD=3ED,直接写出C点的坐标.

如图,直线l1:y=﹣
x+m与x轴交于点A,直线l2:y=2x+n与y轴交于点B,与直线l1交于点P(2,2),则△PAB的面积为_____.


长丰草蒜是安徽省特色水果,安徽省的特产之一,其产地长丰县是国家无公害草莓生产示范基地.小李从长丰通过某快递公司给在北京的姥姥寄一盒草莓,快递时,他了解到这个公司除收取每次8元的包装费外,草莓不超过1千克收费22元,超过1千克,则超出部分按每千克10元加收费用.设该公司从长丰到北京快寄草莓的费用为y(元),所寄草莓为x(千克)
(1)求y与x之间的函数关系式;
(2)已知小李给姥娆快寄了2.5千克草毒,请你求出这次快寄的费用是多少元?
(1)求y与x之间的函数关系式;
(2)已知小李给姥娆快寄了2.5千克草毒,请你求出这次快寄的费用是多少元?
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴交于点A,与y轴交于点B(0,2),且与正比例函数y=
x的图象交于点C(m,3).
(1)求一次函数y=kx+b(k≠0)的函数关系式;
(2)△AOC的面积为______;
(3)若点M在第二象限,△MAB是以AB为直角边的等腰直角三角形,直接写出点M的坐标.


(1)求一次函数y=kx+b(k≠0)的函数关系式;
(2)△AOC的面积为______;
(3)若点M在第二象限,△MAB是以AB为直角边的等腰直角三角形,直接写出点M的坐标.
如图,直角坐标系xOy中,一次函数y=kx+5的图象l1分别与x,y轴交于A,B两点,正比例函数y=2x的图象l2与l1交于点C(m,4).

(1)求m的值及l1的解析式;
(2)求S△AOC﹣S△BOC的值.

(1)求m的值及l1的解析式;
(2)求S△AOC﹣S△BOC的值.