如图,
表示某机床公司一天的销售收入与机床销售量的关系,
表示该公司一天的销售成本与机床销售量的关系.有以下四个结论:①
对应的函数表达式是y=x;②
对应的函数表达式是y=x+1;③当销售量为2件时,销售收入等于销售成本;④利润与销售量之间的函数表达式是w=0.5x-1.其中正确的结论为____(请把所有正确的序号填写在横线上).





如图,甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(时)之间的关系如图所示,观察图象回答下列问题:
(1)A,B两城相距 千米
(2)若两车同时出发,乙车将比甲车早到 小时.
(3)乙车的函数关系式为 .
(4)甲车出发 少时两车相遇.
(5)当乙车行驶过程中/车出发 小时,甲、乙两车相距40千米.
(1)A,B两城相距 千米
(2)若两车同时出发,乙车将比甲车早到 小时.
(3)乙车的函数关系式为 .
(4)甲车出发 少时两车相遇.
(5)当乙车行驶过程中/车出发 小时,甲、乙两车相距40千米.

某校计划组织1920名师生到烈士陵园研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
注:载客量指的是每辆客最多可载该校师生的人数.
设学校租用A型号客车x辆,租车总费用为y元.
(1)求y与x的函数关系式,并求出x的取值范围;
(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.
型号 | 载客量 | 租金单价 |
A | 53人/辆 | 680 |
B | 45人/辆 | 580 |
注:载客量指的是每辆客最多可载该校师生的人数.
设学校租用A型号客车x辆,租车总费用为y元.
(1)求y与x的函数关系式,并求出x的取值范围;
(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.
一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米.两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:

(1)根据图象,直接写出y1,y2关于x的函数关系式;
(2)当x为何值时,两车相遇?
(3)甲、乙两地间有A、B两个加油站,相距280千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.

(1)根据图象,直接写出y1,y2关于x的函数关系式;
(2)当x为何值时,两车相遇?
(3)甲、乙两地间有A、B两个加油站,相距280千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3…在直线l上,点C1、C2、C3…在y轴正半轴上,则点B2019的横坐标是____.

已知,直线l1:y=2x+3与直线l2:y=kx+b的交点A在y轴上,直线l3:y=x与直线l1相交于点B与直线l2相交于点C(1,1).
(1)求直线l2的解析式和B点的坐标;
(2)求△ABC的面积.
(1)求直线l2的解析式和B点的坐标;
(2)求△ABC的面积.

万州区初中数学教研工作坊到重庆某中学开展研讨活动,先后乘坐甲、乙两辆汽车从万州出发前往相距250千米的重庆,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到重庆,如图是甲、乙两车之间的距离s(km),乙车出发时间t(h)之间的函数关系图象,则甲车从万州出发到重庆共花费了_____小时.

小慧家与文具店相距720米,小慧从家出发,匀速步行12分钟来到文具店,买文具用时4分钟,因家中有事,沿原路匀速跑步返回家中,用时6分钟.
(1)小慧返回家中的速度比去文具店的速度快 米/分钟;
(2)请你画出这个过程中,小慧离家的距离
与时间
的函数图象;
(3)求小慧从家出发后经过多少分钟与她家距离为480米.
(1)小慧返回家中的速度比去文具店的速度快 米/分钟;
(2)请你画出这个过程中,小慧离家的距离


(3)求小慧从家出发后经过多少分钟与她家距离为480米.

如图,在平面直角坐标系
中,直线
(
)与直线
平行,且与直线
交于点
.
(1)求直线
的函数表达式;
(2)
、
分别是直线
、
上两点,
点的横坐标为
,且
轴,若
,求
的值.






(1)求直线

(2)










海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应山东省加快新旧动能转换的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为
万元,不合要求的扇贝有
万笼.
(1)求纯收入
关于
的关系式.
(2)当
为何值时,养殖场不赔不嫌?


(1)求纯收入


(2)当
