- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- + 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将一张正方形纸片,四角各剪去一个同样大小的小正方形,做成一个无盖的长方体盒子.若做成的长方体盒子的底面边长为
厘米,盒子的体积为
立方厘米,那么原正方形纸片的边长为_____厘米



如图,已知数轴上点
表示的数为
,点
表示的数为
,以
为边在数轴的上方作正方形ABCD.动点
从点
出发,以每秒
个单位长度的速度沿数轴正方向匀速运动,同时动点
从点
出发,以每秒
个单位长度的速度向点
匀速运动,到达
点后再以同样的速度沿数轴正方向匀速运动,设运动时间为
秒
.

(1)若点
在线段
.上运动,当t为何值时,
?
(2)若点
在线段
上运动,连接
,当t为何值时,三角形
的面积等于正方形
面积的
?
(3)在点
和点
运动的过程中,当
为何值时,点
与点
恰好重合?
(4)当点
在数轴上运动时,是否存在某-时刻t,使得线段
的长为
,若存在,求出
的值;若不存在,请说明理由.

















(1)若点



(2)若点






(3)在点





(4)当点




如图所示是长方体的平面展开图,设
,若
.

(1)求长方形
的周长与长方形
的周长(用字母
进行表示) ;
(2)若长方形
的周长比长方形
的周长少8,求原长方体的体积.



(1)求长方形



(2)若长方形


如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF,若AB=8,且EF平分∠BED,则AD的长为_________

已知矩形ABCD中,
,
,现有两只蚂蚁P和Q同时分别从A、B出发,沿
方向前进,蚂蚁P每秒走1cm,蚂蚁Q每秒走2cm.问:


(1)蚂蚁出发后△PBQ第一次是等腰三角形需要爬行几秒?
(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?





(1)蚂蚁出发后△PBQ第一次是等腰三角形需要爬行几秒?
(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?
如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒.
(1)若PE⊥BC,求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.
(1)若PE⊥BC,求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.

如图,矩形
中,
,
,点
从点
出发,以每秒一个单位的速度沿
的方向运动;同时点
从点
出发,以每秒2个单位的速度沿
的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为
秒.

(1)当
______时,两点停止运动;
(2)当
为何值时,
是等腰三角形?











(1)当

(2)当


如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:

(1)将下面的表格补充完整:
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.

(1)将下面的表格补充完整:
正多边形边数 | 3 | 4 | 5 | 6 | … | n |
∠α的度数 | 60° | 45° | | | … | |
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.
方案一:让每天所有取奶的人到奶站的距离总和最小;
方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.
(1)若按照方案一建站,取奶站应建在什么位置?
(2)若按照方案二建站,取奶站应建在什么位置?
方案一:让每天所有取奶的人到奶站的距离总和最小;
方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.
(1)若按照方案一建站,取奶站应建在什么位置?
(2)若按照方案二建站,取奶站应建在什么位置?