如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三个图形拼成一个新的长方形.

(1)求拼成的新的长方形的周长(用含m或n的代数式表示);
(2)当m=7,n=4时,直接写出拼成的新的长方形的面积.

(1)求拼成的新的长方形的周长(用含m或n的代数式表示);
(2)当m=7,n=4时,直接写出拼成的新的长方形的面积.
(探究)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a,b的等式表示)
(应用)请应用这个公式完成下列各题:
(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为 .
(2)计算:20192﹣2020×2018.
(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.
(应用)请应用这个公式完成下列各题:
(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为 .
(2)计算:20192﹣2020×2018.
(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.

如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
某学校改造一个边长为5米的正方形花坛,经规划后,南北方向要缩短x米(0<x<5),东西方向要加长x米,则改造后花坛的面积与原来的花坛面积相比( )
A.增加了x平方米 | B.减少了2x平方米 |
C.保持不变 | D.减少了x2平方米 |
如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形 (a >b) ,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是()


A.a2 -b2 = (a +b)(a -b) | B.(a +b) 2 =a2+ 2ab +b2 |
C.(a -b) 2 =a2- 2ab +b2 | D.(a + 2b)(a -b) =a2 +ab - 2b2 |
乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)
(4)运用你所得到的公式计算:10.3×9.7.

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)
(4)运用你所得到的公式计算:10.3×9.7.