- 数与式
- 计算多项式乘多项式
- (x+p)(x+q)型多项式乘法
- 已知多项式乘积不含某项求字母的值
- 多项式乘多项式——化简求值
- 多项式乘多项式与图形面积
- + 多项式乘法中的规律性问题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
仔细观察下列等式:
第1个:22﹣1=1×3
第2个:32﹣1=2×4
第3个:42﹣1=3×5
第4个:52﹣1=4×6
第5个:62﹣1=5×7
…
这些等式反映出自然数间的某种运算规律.按要求解答下列问题:
(1)请你写出第6个等式: ;
(2)设n(n≥1)表示自然数,则第n个等式可表示为 ;
(3)运用上述结论,计算:
.
第1个:22﹣1=1×3
第2个:32﹣1=2×4
第3个:42﹣1=3×5
第4个:52﹣1=4×6
第5个:62﹣1=5×7
…
这些等式反映出自然数间的某种运算规律.按要求解答下列问题:
(1)请你写出第6个等式: ;
(2)设n(n≥1)表示自然数,则第n个等式可表示为 ;
(3)运用上述结论,计算:

下列算式是一类两个两位数相乘的特殊计算方法:
67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.
(1)仿照上面方法计算,求44×46和51×59的值.
(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a、b分别表示两个两位数的个位数字,c表示十位上的数字.请你用含a、b、c的式子表示上面的规律;
(3)仿照(1)的计算方法,计算552×558.
67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.
(1)仿照上面方法计算,求44×46和51×59的值.
(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a、b分别表示两个两位数的个位数字,c表示十位上的数字.请你用含a、b、c的式子表示上面的规律;
(3)仿照(1)的计算方法,计算552×558.
(1)填空
_____________;
______________;
____________.
(2)猜想
______________(n为大于1正整数).
(3)利用(2)题的结论计算下列各题:
①
_________________;
②计算:
的值.



(2)猜想

(3)利用(2)题的结论计算下列各题:
①

②计算:

(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4
(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5
……
(1)根据规律可得(a﹣b)(an﹣1+an﹣2b+an﹣3b2+…+a2bn﹣3+abn﹣2+bn﹣1)= (其中n为正整数);
(2)仿照上面等式分解因式:a6﹣b6= ;
(3)根据规律可得(a﹣1)(an﹣1+an﹣2+…+a2+a+1)= (其中n为正整数);
(4)计算:(4﹣1)(410+49+48+…+42+4+1)= ;
(5)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)+1= .
(a﹣b)(a2+ab+b)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4
(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5
……
(1)根据规律可得(a﹣b)(an﹣1+an﹣2b+an﹣3b2+…+a2bn﹣3+abn﹣2+bn﹣1)= (其中n为正整数);
(2)仿照上面等式分解因式:a6﹣b6= ;
(3)根据规律可得(a﹣1)(an﹣1+an﹣2+…+a2+a+1)= (其中n为正整数);
(4)计算:(4﹣1)(410+49+48+…+42+4+1)= ;
(5)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)+1= .
寻找公式,求代数式的值:从2开始,连续的的偶数相加,它们的和的情况如下表:

(1)根据上面的等式,你能发现当n个连续的的偶数相加时,它们的和S=2+4+6+8+……+2n= .
(2)并按照此规律计算:①2+4+6+……300的值;②162+164+166+……+400的值.

(1)根据上面的等式,你能发现当n个连续的的偶数相加时,它们的和S=2+4+6+8+……+2n= .
(2)并按照此规律计算:①2+4+6+……300的值;②162+164+166+……+400的值.
观察下列各式:
(x−1)(x+1)=x²−1
(x−1)(x²+x+1)=x³−1
(x−1)(x³+x²+x+1)=x
−1…
根据以上规律,求1+2+2²+…+
__________.
(x−1)(x+1)=x²−1
(x−1)(x²+x+1)=x³−1
(x−1)(x³+x²+x+1)=x

根据以上规律,求1+2+2²+…+

如图所示的“贾宪三角”告诉了我们二项式乘方展开式的系数规律,如:第四行的四个数恰好对应着
的展开式
的系数;第五行的五个数恰好对应着
的展开式
的系数;根据数表中前五行的数字所反映的规律,则
____________________________________.





