- 数与式
- 计算多项式乘多项式
- (x+p)(x+q)型多项式乘法
- 已知多项式乘积不含某项求字母的值
- 多项式乘多项式——化简求值
- 多项式乘多项式与图形面积
- + 多项式乘法中的规律性问题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
观察下列各式:
(x﹣1)÷(x﹣1)=1
(x2﹣1)÷(x﹣1)=x+1;
(x3﹣1)÷(x﹣1)=x2+x+1
(x4﹣1)÷(x﹣1)=x3+x2+x+1
(1)根据上面各式的规律可得(xn+1﹣1)÷(x﹣1)= ;
(2)求22019+22018+22017+……+2+1的值.
(x﹣1)÷(x﹣1)=1
(x2﹣1)÷(x﹣1)=x+1;
(x3﹣1)÷(x﹣1)=x2+x+1
(x4﹣1)÷(x﹣1)=x3+x2+x+1
(1)根据上面各式的规律可得(xn+1﹣1)÷(x﹣1)= ;
(2)求22019+22018+22017+……+2+1的值.
有一系列等式:
1×2×3×4+1=(12+3×1+1)2;
2×3×4×5+1=(22+3×2+1)2;
3×4×5×6+1=(32+3×3+1)2;
4×5×6×7+1=(42+3×4+1)2;
(1)根据你的观察,归纳,发现规律,写出9×10×11×12+1的结果;
(2)试猜想:n(n+1)(n+2)(n+3)+1的结果?
(3)证明你的猜想.
1×2×3×4+1=(12+3×1+1)2;
2×3×4×5+1=(22+3×2+1)2;
3×4×5×6+1=(32+3×3+1)2;
4×5×6×7+1=(42+3×4+1)2;
(1)根据你的观察,归纳,发现规律,写出9×10×11×12+1的结果;
(2)试猜想:n(n+1)(n+2)(n+3)+1的结果?
(3)证明你的猜想.
如图①是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!

如图②是(a+b)n的三个展开式.结合上述两图之间的规律解题:
(1)请直接写出(a+b)4的展开式:(a+b)4= .
(2)请结合图②中的展开式计算下面的式:(x+2)3= .

如图②是(a+b)n的三个展开式.结合上述两图之间的规律解题:
(1)请直接写出(a+b)4的展开式:(a+b)4= .
(2)请结合图②中的展开式计算下面的式:(x+2)3= .
探索题.
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
……
观察以上等式,发现规律,利用所得规律,解决下列问题:
(1)直接写出(x﹣1)(x5+x4+x3+x2+x+1)= .
(2)直接写出(x﹣1)(xn﹣1+xn﹣2+……x2+x+1)= .
(3)直接写出26+25+24+23+22+2+1的值 .
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
……
观察以上等式,发现规律,利用所得规律,解决下列问题:
(1)直接写出(x﹣1)(x5+x4+x3+x2+x+1)= .
(2)直接写出(x﹣1)(xn﹣1+xn﹣2+……x2+x+1)= .
(3)直接写出26+25+24+23+22+2+1的值 .
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.
例如:
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
请你猜想(a+b)9的展开式中所有系数的和是( )

例如:
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
请你猜想(a+b)9的展开式中所有系数的和是( )

A.2018 | B.512 | C.128 | D.64 |
我们知道整数
除以整数
(其中
),可以用竖式计算,例如计算
可以用整式除法如图:
,所以
.
类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下:
①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐;
②用被除式的第一项除以除式第一项,得到商式的第一项;
③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项;
④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.
例如:计算
.
可用整式除法如图:

所以
除以
商式为
,余式为0
根据阅读材料,请回答下列问题:
(1)
.
(2)
,商式为 ,余式为 .
(3)若关于
的多项式
能被三项式
整除,且
均为整数,求满足以上条件的
的值及商式.






类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下:
①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐;
②用被除式的第一项除以除式第一项,得到商式的第一项;
③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项;
④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.
例如:计算

可用整式除法如图:

所以


商式为

根据阅读材料,请回答下列问题:
(1)

(2)

(3)若关于





我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式
的展开式的各项系数,此“三角形”称为“杨辉三角”.如
其展开式的系数从左起依次是
,
,
,
,请根据“杨辉三角”计算
的展开式中从左起第四项的系数为( )









A.![]() | B.![]() | C.![]() | D.![]() |
阅读理解应用
待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.
待定系数法可以应用到因式分解中,例如问题:因式分解
.
因为
为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.
故我们可以猜想
可以分解成
,展开等式右边得:
,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:
,
,
可以求出
,
.
所以
.
(1)若
取任意值,等式
恒成立,则
________;
(2)已知多项式
有因式
,请用待定系数法求出该多项式的另一因式;
(3)请判断多项式
是否能分解成的两个均为整系数二次多项式的乘积,并说明理由.
待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.
待定系数法可以应用到因式分解中,例如问题:因式分解

因为

故我们可以猜想








所以

(1)若



(2)已知多项式


(3)请判断多项式

我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了
(
=1,2,3,4,5,6)的展开式(按
的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应
展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着
展开式中各项的系数.

(1)
展开式中
的系数为________;
(2)
展开式中各项系数的和为___________.






(1)


(2)
