- 数与式
- 计算多项式乘多项式
- (x+p)(x+q)型多项式乘法
- 已知多项式乘积不含某项求字母的值
- 多项式乘多项式——化简求值
- + 多项式乘多项式与图形面积
- 多项式乘法中的规律性问题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.

(1)通道的面积共有多少平方米?
(2)剩余草坪的面积是多少平方米?
(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?

(1)通道的面积共有多少平方米?
(2)剩余草坪的面积是多少平方米?
(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?
如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b则图2中纸盒底部长方形的周长为( )


A.4ab | B.8ab | C.4a+b | D.8a+2b |
如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为 

如图,一个长方形被分成四块:两个小长方形,面积分别为S1,S2,两个小正方形,面积分别为S3,S4,若 2S1-S2 的值与AB 的长度无关,则S3 与S4 之间的关系是______.

如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积.
方法1: ;
方法2: ;
(2)观察图2,请你写出下列三个代数式:
之间的等量关系: ;(3)根据(2)题中的等量关系,解决下面的问题:已知a+b=3,ab=2 , 求
的值.

(1)请用两种不同的方法求图2中阴影部分的面积.
方法1: ;
方法2: ;
(2)观察图2,请你写出下列三个代数式:


根据几何图形的面积关系可以形象直观地表示多项式的乘法,例如(a+b)(p+q)=ap+aq+bp+bq可以用图(1)表示:

(1)根据图(2),写出一个多项式乘以多项式的等式.
(2)从A、B两题中任选一题作答.


(1)根据图(2),写出一个多项式乘以多项式的等式.
(2)从A、B两题中任选一题作答.
A.请画一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母. |
B.请画一个几何图形,表示(x-p)(x-q)=x2-(p+q)x+pq,并仿照上图标明相应的字母. |
一个大正方形和四个全等的小正方形按图①、②两种方式摆放,设小正方形的边长为x,请仔细观察图形回答下列问题.
(1)用含a、b的代数式表示x,则x= .
(2)用含a、b的代数式表示大正方形的边长 .(请将结果化为最简)
(3)利用前两问的结论求出图②的大正方形中未被小正方形覆盖部分的面积.(用a、b的代数式表示)
(1)用含a、b的代数式表示x,则x= .
(2)用含a、b的代数式表示大正方形的边长 .(请将结果化为最简)
(3)利用前两问的结论求出图②的大正方形中未被小正方形覆盖部分的面积.(用a、b的代数式表示)

某学校办公楼前有一长为
,宽为
的长方形空地,在中心位置留出一个半径为
的圆形区域建一个喷泉,两边是两块长方形的休息区,阴影部分为绿地.

(1)用含字母和
的式子表示阴影部分的面积;
(2)当
=4,
=3,
=1,
=2时,阴影部分面积是多少?(
取3)




(1)用含字母和

(2)当




