- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合的阶,集合之间的关系
- + 集合的分划
- 子集,子集族
- 容斥原理
- 极端原理
- 抽屉原理
11个兴趣班,若干学生参与(可重复参与),每个兴趣班人数相同(招满,人数未知).已知任意九个兴趣班包括了全体学生,而任意八个兴趣班没有包括全体学生求学生总人数的最小值.
有限个元素组成的集合为
,
,集合
中的元素个数记为
,定义
,集合
的个数记为
,当
,称集合
具有性质
.
(1)设集合
具有性质
,判断集合
中的三个元素是否能组成等差数列,请说明理由;
(2) 设正数列
的前
项和为
,满足
,其中
,数列
中的前
项:
组成的集合
记作
,将集合
中的所有元素
从小到大排序,即
满足
,求
;
(3) 己知集合
,其中数列
是等比数列,
,且公比是有理数,判断集合
是否具有性质
,说明理由.










(1)设集合



(2) 设正数列















(3) 己知集合





已知数集
具有性质
:对任意的
、
,
与
两数中至少有一个属于
.
(1)分别判断数集
与
是否具有性质
,并说明理由;
(2)证明:
且
;
(3)证明:当
时,
.







(1)分别判断数集



(2)证明:


(3)证明:当


设数列
和
的项数均为
,则将两个数列的偏差距离定义为
,其中
.
(1)求数列1,2,7,8和数列2,3,5,6的偏差距离;
(2)设
为满足递推关系
的所有数列
的集合,
和
为
中的两个元素,且项数均为
,若
,
,
和
的偏差距离小于2020,求
最大值;
(3)记
是所有7项数列
或
的集合,
,且
中任何两个元素的偏差距离大于或等于3,证明:
中的元素个数小于或等于16.





(1)求数列1,2,7,8和数列2,3,5,6的偏差距离;
(2)设












(3)记





