- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- + 集合的阶,集合之间的关系
- 集合的分划
- 子集,子集族
- 容斥原理
- 极端原理
- 抽屉原理
将边长为3的正
的各边三等分,过每个分点分别作另外两边的平行线,称
的边及这些平行线所交的10个点为格点.若在这10个格点中任取
个格点,一定存在三个格点能构成一个等腰三角形(包括正三角形).求
的最小值.




设
、
为平面上两个点集,满足
,
,且任意三点不共线.在集合
和
间各连若干条线段,每条线段均一个端点在集合
中,另一个端点在集合
中,且任意两点间至多连一条线段,记所有线段构成的集合为
.若集合
满足对于集合
或
中任意一点均至少连出
条线段,则称集合
是“
一好的”.试确定
的最大值,使得去掉任意一条线段,集合
均不是
一好的.

















