- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8
10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.
有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):

(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;
(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;
(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设
为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出
的数学期望(不需要计算过程).

有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):
| 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
天津 | 24 | 22 | 26 | 23 | 24 | 26 | 27 | 25 | 28 | 24 | 25 | 26 |
上海 | 32 | 27 | 33 | 31 | 30 | 31 | 32 | 33 | 30 | 32 | 30 | 30 |

(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;
(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;
(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设


为迎接
年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过
小时免费,超过
小时的部分每小时收费标准为
元(不足1小时的部分按
小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过
小时离开的概率分别为
、
;
小时以上且不超过
小时离开的概率分别为
、
;两人滑雪时间都不会超过
小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量
(单位:元),求
的分布列与数学期望
,方差
.













(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量




在某次数学测验中,有6位同学的平均成绩为117分,用
表示编号为
的同学所得成 绩,6位同学成绩如表,

(1)求
及这6位同学成绩的方差;
(2)从这6位同学中随机选出2位同学,则恰有1位同学成绩在区间
中的概率.



(1)求

(2)从这6位同学中随机选出2位同学,则恰有1位同学成绩在区间

某工厂36名工人的年龄数据如下表.
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值x和方差s2;
(3)36名工人中年龄在
与
之间有多少人?所占的百分比是多少(精确到0.01%)?
工人编号 年龄 | 工人编号 年龄 | 工人编号 年龄 | 工人编号 年龄 |
1 40 | 10 36 | 19 27 | 28 34 |
2 44 | 11 31 | 20 43 | 29 39 |
3 40 | 12 38 | 21 41 | 30 43 |
4 41 | 13 39 | 22 37 | 31 38 |
5 33 | 14 43 | 23 34 | 32 42 |
6 40 | 15 45 | 24 42 | 33 53 |
7 45 | 16 39 | 25 37 | 34 37 |
8 42 | 17 38 | 26 44 | 35 49 |
9 43 | 18 36 | 27 42 | 36 39 |
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值x和方差s2;
(3)36名工人中年龄在


某校高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为
.
(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为
,写出
的概率分布列,并求
及
.

(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为




随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数
的分布列及其均值(即数学期望).
(注:
,其中
为样本容量)

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数

(注:



给出下列结论:
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;
(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;
(4)若关于
的不等式
在
上恒成立,则
的最大值是1;
(5)甲、乙两人向同一目标同时射击一次,事件
:“甲、乙中至少一人击中目标”与事件
:“甲,乙都没有击中目标”是相互独立事件.
其中结论正确的是 .(把所有正确结论的序号填上)
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;
(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;
(4)若关于




(5)甲、乙两人向同一目标同时射击一次,事件


其中结论正确的是 .(把所有正确结论的序号填上)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组
,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图,

根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设
为达标人数,求
的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如下表:
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:




根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设


(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如下表:
性别 是否 达标 | 男 | 女 | 合计 |
达标 | ![]() | ![]() | _____ |
不达标 | ![]() | ![]() | _____ |
合计 | ______ | ______ | ![]() |
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为“体育迷”与性别
有关?

(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽
样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望
和方差
。
附:


将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的

有关?

(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽
样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望


附:

