- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数
和平均温度
有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
表中
,

(1)根据散点图判断,
与
(其中
为自然对数的底数)哪一个更适宜作为平均产卵数
关于平均温度
的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出
关于
的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为
.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为
,求
的最大值,并求出相应的概率
.
(ⅱ)当
取最大值时,记该地今后5年中,需要人工防治的次数为
,求
的数学期望和方差.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为:
,
.


平均温度![]() | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
平均产卵数![]() | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
![]() | ![]() | ![]() | ![]() | ![]() |
27.429 | 81.286 | 3.612 | 40.182 | 147.714 |
表中



(1)根据散点图判断,







(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为

(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为



(ⅱ)当



附:对于一组数据




条件
将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格
中的数字为
,方格
中的数字为
;命题1若
,则
,且
;命题2若
,则
,且
( )













A.命题1是真命题,命题2是假命题 | B.命题1和命题2都是假命题 |
C.命题1是假命题,命题2是真命题 | D.命题1和命题2都是真命题 |
某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?