- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知随机变量ξ的分布列,则下列说法正确的是( )


A.存在x,y∈(0,1),E(ξ)>![]() | B.对任意x,y∈(0,1),E(ξ)≤![]() |
C.对任意x,y∈(0,1),D(ξ)≤E(ξ) | D.存在x,y∈(0,1),D(ξ)>![]() |
某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
①若烘焙店一天加工16个这种蛋糕,
表示当天的利润(单位:元),求
的分布列与数学期望及方差;
②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润



(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
日需求量![]() | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16个这种蛋糕,


②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
已知
两个不透明盒中各有形状、大小都相同的红球、白球若干个.
盒中有
个红球与
个白球,
盒中有
个红球与
个白球
,若从
盒中各取一个球,
表示所取的
个球中红球的个数,则当
取到最大值时,
的值为( )













A.![]() | B.![]() | C.![]() | D.![]() |