某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

(1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2018年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:
使用寿命

材料类型

1个月
2个月
3个月
4个月
总计

20
35
35
10
100

10
30
40
20
100
 
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:
参考公式:回归直线方程为,其中
当前题号:1 | 题型:解答题 | 难度:0.99
据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数
30
40
50
60
天数

10
10
20
10

5
15
25
5
 
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1)与D(2ξ+1)的值分别为(  )
A.13,4B.13,8
C.7,8D.7,16
当前题号:3 | 题型:单选题 | 难度:0.99
某投资公司在年年初准备将万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能损失,也可能不赔不赚,且这三种情况发生的概率分别为.
针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.
(1)求三人观看同一场比赛的概率;
(2)记观看第一场比赛的人数是,求的分布列和期望.
当前题号:5 | 题型:解答题 | 难度:0.99
已知随机变量,若,则__________.
当前题号:6 | 题型:填空题 | 难度:0.99
生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共种,现对这两种方案生产的产品分别随机调查了各次,得到如下统计表:
①生产件甲产品和件乙产品
正次品
甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

频 数






 
②生产件甲产品和件乙产品
正次品
乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

频 数






 
已知生产电子产品甲件,若为正品可盈利元,若为次品则亏损元;生产电子产品乙件,若为正品可盈利元,若为次品则亏损元.
(I)按方案①生产件甲产品和件乙产品,求这件产品平均利润的估计值;
(II)从方案①②中选其一,生产甲乙产品共件,欲使件产品所得总利润大于元的机会多,应选用哪个?
当前题号:7 | 题型:解答题 | 难度:0.99

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立.令表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1)写出的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
当前题号:8 | 题型:解答题 | 难度:0.99
某班拟从两名同学中选一人参加学校知识竞赛,现设计一个预选方案:选手从五道题中一次性随机抽取三道进行回答,已知甲五道题中只会三道,乙每道题答对的概率都是3/5,且每道题答对与否互不影响.
(1) 分别求出甲乙两人答对题数的概率分布;
(2) 你认为派谁参加比赛更合适.
当前题号:9 | 题型:解答题 | 难度:0.99
某人经营 一个抽奖游戏,顾客花费元钱可购买一次游戏机会,每次游戏,顾客从标有个红球,和标有个黑球共个球中随机摸出个球,并根据摸出的球的情况进行兑奖.经营者奖顾客摸出的球情况分成以下类别:A:两球的颜色相同且号码相邻;B: 两球的颜色相同,但号码不相邻;
C: 两球的颜色不同,但号码相邻;D: 两球的号码相同;E: 其它情况.经营者打算将以上五种类别中最不容易发生的一种类别对应一等奖,最容易发生的一种类别对应二等奖,其他类别答应三等奖.
(1)一、二等奖分别对应哪一种类别(用字母表示即可);
(2)若一、二、三等奖分别获得价值元、元、元的奖品,某天所有顾客参加游戏的次数共计次,试估计经营者这一天的盈利.
当前题号:10 | 题型:解答题 | 难度:0.99