某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

   注:尺寸数据在内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;   
(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
当前题号:1 | 题型:解答题 | 难度:0.99
基于移动互联技术的共享单车被称为“新四大发明”之一,短时间就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为,市场占有率为,得结果如下表:
年月
2018.10
2018.11
2018.12
2019.1
2019.2
2019.3

1
2
3
4
5
6

11
13
16
15
20
21
 
(1)观察数据看出,可用线性回归模型拟合的关系,请用相关系数加以说明(精确到0.001);
(2)求关于的线性回归方程,并预测该公司2019年4月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲、乙两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频率表如下:

经测算,平均每辆单车可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?
参考数据:
回归方程中斜率和截距的最小二乘法估计公式分别为.
当前题号:2 | 题型:解答题 | 难度:0.99
(本小题满分13分)
在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.
(Ⅰ)写出ξ的分布列(不要求写出计算过程);
(Ⅱ)求数学期望
(Ⅲ)求概率Pξ).
当前题号:3 | 题型:解答题 | 难度:0.99
某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了两种抽奖方案,方案的中奖率为,中奖可以获得分;方案的中奖率为,中奖可以获得分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,
(1)若顾客甲选择方案抽奖,顾客乙选择方案抽奖,记他们的累计得分为,若的概率为,求
(2)若顾客甲、顾客乙两人都选择方案或都选择方案进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?
当前题号:4 | 题型:解答题 | 难度:0.99
某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.

(1)根据数据可知具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有如下关系:
鱼的重量(单位:百斤)



冲水机只需运行台数



 
若某台增氧冲水机运行,则商家每期可获利千元;若某台冲水机未运行,则商家每期亏损千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?
附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为
当前题号:5 | 题型:解答题 | 难度:0.99
某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现,在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元,现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据200个一级过滤器更换的滤芯个数制成的柱状图,表是根据100个二级过滤器更换的滤芯个数制成的频数分布表:

二级滤芯更换频数分布表:
二级滤芯更换的个数
5
6
频数
60
40
 
以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;
(2)记表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求的分布列及数学期望;
(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.
当前题号:6 | 题型:解答题 | 难度:0.99
某超市采购了一批袋装的进口牛肉干进行销售,共1000袋,每袋成本为30元,销售价格为50元,经过科学测定,每袋牛肉干变质的概率为,且各袋牛肉干是否变质相互独立.依据消费者权益保护法的规定:超市出售变质食品的,消费者可以要求超市退一赔三.为了保护消费者权益,针对购买到变质牛肉干的消费者,超市除退货外,并对每袋牛肉干以销售价格的三倍现金赔付,且把变质牛肉干做废物处理,不再进行销售.
(1)若销售完这批牛肉干后得到的利润为X,且,求p的取值范围;
(2)已知,若超市聘请兼职员工来检查这批牛肉干是否变质,超市需要支付兼职员工工资5000元,这样检查到的变质牛肉干直接当废物处理,就不会流入到消费者手中.请以超市获取的利润为决策依据,判断超市是否需要聘请兼职员工来检验这批牛肉干是否变质?
当前题号:7 | 题型:解答题 | 难度:0.99
某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15元/件(不含一次性设备改进投资费用).

(1)根据年销售量的频率分布直方图,估算年销量的平均数(同一组中的数据用该组区间的中点值作代表);
(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)
当前题号:8 | 题型:解答题 | 难度:0.99
由于工作需要,某公司准备一次性购买两台具有智能打印、扫描、复印等多种功能的智能激光型打印机.针对购买后未来五年内的售后,厂家提供如下两种方案:
方案一:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元;
方案二:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元.
该公司搜集并整理了台这款打印机使用五年的维修次数,所得数据如下表所示:
维修次数




台数




 
以这台打印机使用五年的维修次数的频率代替台打印机使用五年的维修次数的概率,记表示这两台智能打印机五年内共需维修的次数.
(1)求的分布列及数学期望;
(2)以两种方案产生的维修费用的期望值为决策依据,写出你的选择,并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99