- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- 二项分布的均值
- + 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.
项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为
,若盈利则盈利投资额的40%,否则盈利额为0.
项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p和
.
(1)若投资项目一,记
为盈利的天坑院的个数,求
(用p表示);
(2)若投资项目二,记投资项目二的盈利为
百万元,求
(用p表示);
(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.
项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为


项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p和

(1)若投资项目一,记


(2)若投资项目二,记投资项目二的盈利为


(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.
某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩Z近似的服从正态分布
.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:

(1)求样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过82.7分的毕业生可参加A、B、C三家公司的面试.
(i)用样本平均数
作为的估计值
,用样本标准差s作为
的估计值
.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
(ii)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:
李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为0.3,0.3,0.4.李华准备依次从A、B、C三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会,李华在某公司选岗时,若以该岗位与未进行面试公司的工资期望作为抉择依据,问李华可以选择A、B、C公司的哪些岗位?并说明理由.
附:
若随机变量
,则
,
.


(1)求样本平均数


(2)若学校规定评估成绩超过82.7分的毕业生可参加A、B、C三家公司的面试.
(i)用样本平均数




(ii)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:
公司 | 甲岗位 | 乙岗位 | 丙岗位 |
A | 9600 | 6400 | 5200 |
B | 9800 | 7200 | 5400 |
C | 10000 | 6000 | 5000 |
李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为0.3,0.3,0.4.李华准备依次从A、B、C三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会,李华在某公司选岗时,若以该岗位与未进行面试公司的工资期望作为抉择依据,问李华可以选择A、B、C公司的哪些岗位?并说明理由.
附:





农机公司出售收割机,一台收割机的使用寿命为五年,在农机公司购买收割机时可以一次性额外订购买若干次维修服务,费用为每次100元,每次维修时公司维修人员均上门服务,实际上门服务时还需支付维修人员的餐饮费50元/次;若实际维修次数少于购买的维修次数,则未提供服务的订购费用退还50%;如果维修次数超过了购买的次数,农机公司不再提供服务,收割机的维修只能到私人维修店,每次维修费用为400元,无须支付餐饮费;--位农机手在购买收割机时,需决策一次性购买多少次维修服务.
为此,他拟范收集、整理出一台收割机在五年使用期内维修次数及相应的频率如下表:

(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?
(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.
为此,他拟范收集、整理出一台收割机在五年使用期内维修次数及相应的频率如下表:

(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?
(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.
据长期统计分析,某货物每天的需求量
在17与26之间,日需求量
(件)的频率
分布如下表所示:
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为
,视日需求量
的频率为概率
,求在每天进货量为
的条件下,日销售量
的期望值
(用
表示);
(2)在(1)的条件下,写出
和
的关系式,并判断
为何值时,日利润的均值最大?



需求量![]() | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
频率![]() | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为







(2)在(1)的条件下,写出



为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.
(1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为
,求
的分布列和数学期望;
(2)试验后发现乙种鱼苗较好,扶贫工作组决定购买
尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?
(1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为


(2)试验后发现乙种鱼苗较好,扶贫工作组决定购买

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,
表示当天的利润(单位:元),求
的分布列及数学期望;
(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润



(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,


(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.
某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,
表示当天的利润(单位:元),求
的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
(Ⅰ)若小店一天购进16份,求当天的利润



(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量![]() | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,


(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?