从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.
(1)求所选3人中女生人数的概率;
(2)求的分布列及数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
名学生,其中有名男生.从中选出名代表,选出的代表中男生人数为,则其数学期望为( )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1A2A3A4A5A6和4名女志愿者B1B2B3B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。
(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
当前题号:3 | 题型:解答题 | 难度:0.99
伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如表:
年龄(单位:岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75)
人数
5
10
15
10
5
5
使用手机支付人数
3
10
12
7
2
1
 
(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关;
 
年龄不低于55岁的人数
年龄低于55岁的人数
合计
使用
 
 
 
不适用
 
 
 
合计
 
 
 
 
(2)若从年龄在[55,65),[65,75)内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为ξ,求随机变量ξ的分布列与数学期望;
参考数据如下:

0.05
0.010
0.001
k0
3.841
6.635
10.828
 
参考格式:,其中
当前题号:4 | 题型:解答题 | 难度:0.99
近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数.环保部门记录了某地区7天的空气质量指数,其中,有4天空气质量为优,有2天空气质量为良,有1天空气质量为轻度污染.现工作人员从这7天中随机抽取3天进行某项研究.
(I)求抽取的3天中至少有一天空气质量为良的概率;
(Ⅱ)用表示抽取的3天中空气质量为优的天数,求随机变量的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
 
运动达人
参与者
合计
男教师
60
20
80
女教师
40
20
60
合计
100
40
140
 
(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.
参考公式:,其中.
参考数据:

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。
(1)求甲选手能晋级的概率;
(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。
当前题号:7 | 题型:解答题 | 难度:0.99
某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
月份x
1
2
3
4
5
y(万盒)
4
4
5
6
6
 
(1)该同学为了求出关于的线性回归方程 ,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题,记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:
空气质量指数

良好
轻度污染
中度污染
重度污染
天数
5
 
8
4
 
 
空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.
(1)求的值;
(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?
(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为,求的分布列及数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
从某小组的5名女生和4名男生中任选3人去参加一项公益活动.
(1)求所选3人中恰有一名男生的概率
(2)求所选3人中男生人数ξ的分布列及数学期望
当前题号:10 | 题型:解答题 | 难度:0.99