某中学用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:







男同学人数
7
15
11
12
2
1
女同学人数
5
13
20
9
3
2
 
若将社会实践次数不低于12次的学生称为“社会实践标兵”.
(Ⅰ)将频率视为概率,估计该校1600名学生中“社会实践标兵”有多少人?
(Ⅱ)从已抽取的8名“社会实践标兵”中随机抽取4位同学参加社会实践表彰活动.
(i)设为事件“抽取的4位同学中既有男同学又有女同学”,求事件发生的概率;
(ii)用表示抽取的“社会实践标兵”中男生的人数,求随机变量的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
已知甲盒内有大小相同的个红球和个黑球,乙盒内有大小相同的个红球和个黑球.现从甲、乙两个盒内各任取个球.
(1)求取出的个球中恰有个红球的概率;
(2)设为取出的个球中红球的个数,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
为了适应高考改革,某中学推行“创新课堂”教学。高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.
参考公式
临界值表
当前题号:3 | 题型:解答题 | 难度:0.99
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元)






频数






赞成人数






 
(1)由以上统计数据填下面列联表,并问是否有的把握认为“月收入以元为分界点对“楼市限购令”的态度有差异;
 
月收入不低于百元的人数
月收入低于百元的人数
合计
赞成
______________
______________
______________
不赞成
______________
______________
______________
合计
______________
______________
______________
 
(2)若对在的被调查者中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”的人数为,求随机变量的分布列及数学期望.
参考公式:,其中.
参考值表:
















 





 
当前题号:4 | 题型:解答题 | 难度:0.99
某市交通管理有关部门对年参加驾照考试的岁以下的学员随机抽取名学员,对他们的科目三(道路驾驶)和科目四(安全文明相关知识)进行两轮测试,并把两轮成绩的平均分作为该学员的抽测成绩,记录数据如下:
学员编号










科目三成绩










科目四成绩










 
(1)从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;
(2)根据规定,科目三和科目四测试成绩均达到分以上(含分)才算合格,从抽测的号学员中任意抽取两名学员,记为抽取学员不合格的人数,求的分布列和数学期望
当前题号:5 | 题型:解答题 | 难度:0.99
甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?
当前题号:6 | 题型:解答题 | 难度:0.99
在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.

经计算样本的平均值,标准差. 为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判



评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.
(1)试判断该份试卷被评为哪种等级;
(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某媒体对“男女延迟退休″这一公众关注的问题进行名意调查,如表是在某单位得到的数据:
 
赞同
反对
合计

50
150
200

30
170
200
合计
80
320
400
 
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
随着智能手机的普及,网络搜题软件走进了生活,有教育工作者认为,网搜答案可以起到帮助人们学习的作用,但对多数学生来讲,过度网搜答案容易养成依赖心理,对学习能力造成损害.为了了解学生网搜答案的情况,某学校对学生一月内进行网搜答案的次数进行了问卷调查,并从参与调查的学生中抽取了男、女生各100人进行抽样分析,制成如下频率分布直方图:

记事件“男生1月内网搜答案次数不高于30次”为,根据频率分布直方图得到的估计值为0.65
(1)求的值;
(2)若一学生在1月内网搜答案次数超过50次,则称该学生为“依赖型”,现从样本内的“依赖型”学生中,抽取3人谈话,求抽取的女生人数X的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)

(1)求中位数.
(2)从这15天的数据中任取两天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
当前题号:10 | 题型:解答题 | 难度:0.99