题库 高中数学

题干

某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成三组,并作出如下频率分布直方图:

(1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失则取,且的概率等于经济损失落入的频率)。现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为,求的分布列和数学期望.
(2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
 
经济损失不超过4000元
经济损失超过4000元
合计
捐款超过500元
30
 
 
捐款不超过500元
 
6
 
合计
 
 
 
 
附:临界值表参考公式:

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
上一题 下一题 0.99难度 解答题 更新时间:2018-01-24 03:54:46

答案(点此获取答案解析)

同类题3

某大学就业部从该大学2018年已就业的大学本科毕业生中随机抽取了100人进行了问卷调查,其中有一项是他们的月薪情况,经调查统计发现,他们的月薪收入在3000元到10000元之间,根据统计数据得到如下的频率分布直方图:

若月薪落在区间的左侧,则认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,从而为本科毕业生就业提供更好的指导意见.其中分别为样本平均数和样本标准差,计算可得s≈1500元(同一组中的数据用该组区间的中点值作代表).
(1)现该校2018届大学本科毕业生张茗的月薪为3600元,试判断张茗是否属于“就业不理想”的学生?
(2)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前3组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人中恰有1人月薪不超过5000元的概率;
(3)位于某省的一高校2018届某专业本科毕业生共200人,现他们决定于2019年元旦期间举办一次同学联谊会,并收取一定的活动费用.假定这200人与所抽取样本中的100人月薪分布情况相同,并用样本频率进行估计,现有两种收费方案:
方案一:按每人一个月薪水的10%收取;
方案二:月薪高于样本平均数的毎人收取800元,月薪不低于4000元但低于样本平均数的每人收取400元,月薪低于4000元的不收取任何用.
问:哪一种收费方案最终总费用更少?