- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设整数m是从不等式x2-2x-8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望E(ξ)=________.
一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,
倍的奖励(
),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为
元.
(1)求概率
的值;
(2)为使收益
的数学期望不小于0元,求
的最小值.
(注:概率学源于赌博,请自觉远离不正当的游戏!)



(1)求概率

(2)为使收益


(注:概率学源于赌博,请自觉远离不正当的游戏!)
为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.

(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为
,求随机变量
的分布列和数学期望;
(3)试判断男学生完成套卷数的方差
与女学生完成套卷数的方差
的大小(只需写出结论).

(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为


(3)试判断男学生完成套卷数的方差


设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为
A.n=4,p=0.6 | B.n=6,p=0.4 |
C.n=8,p=0.3 | D.n=24,p=0.1 |
某保险公司新开设了一项保险业务.规定该份保单任一年内如果事件
发生,则该公司要赔偿
元,假若在一年内
发生的概率为
,为保证公司收益不低于
的
,公司应要求该份保单的顾客缴纳的保险金最少为____________元.





