已知是离散型随机变量,则下列结论错误的是(  )
A.B.
C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).
表1:
编号\测试项目
1
2
3
4
5
1
×




2




×
3




×
4



×
×
5





6

×
×

×
7
×



×
8

×
×
×
×
9


×
×
×
10




×
 
规定:每项测试合格得5分,不合格得0分.
(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.
①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;
②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;
(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):
表2:
测试项目
1
2
3
4
5
实测合格人数
8
8
7
7
2
 
定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:
表3:
测试项目
1
2
3
4
5
预测前预估难度
0.9
0.8
0.7
0.6
0.4
 
判断本次测试的难度预估是否合理.
当前题号:2 | 题型:解答题 | 难度:0.99
已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.
(1)求男生闯过四关的概率;
(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.
当前题号:3 | 题型:解答题 | 难度:0.99
小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.
若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
当前题号:4 | 题型:解答题 | 难度:0.99
已知随机变量,且随机变量,则的方差_______.
当前题号:5 | 题型:填空题 | 难度:0.99
某大型商场2019年元旦期间累计生成万张购物单,现从中随机抽取张,并对抽出的每张单消费金额统计得到下表:
消费金额(单位:元)




 
购物单张数
25
25
30
a
b
 
注:由于工作人员失误,后两栏数据无法辨识,只分别用字母代替,不过工作人员清楚记得的关系是.
(1)求的值;
(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则:从装有个红球和个黑球(个球大小、材质完全相同)的不透明口袋中随机摸出个小球;记两种颜色小球数量差的绝对值为;当时,消费者可获得价值元的购物券,当时,消费者可获得价值元购物券,当时,消费者可获得元购物券.求参与抽奖的消费者获得购物券价值的分布列及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如下表,且,则=______,________.
当前题号:7 | 题型:填空题 | 难度:0.99
已知随机变量的分布列如下表所示则的值等于________________
当前题号:8 | 题型:填空题 | 难度:0.99
根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.

(1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).
(2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000元.为减少损失,工厂制定了三种应对方案.
方案一:不采取措施;
方案二:防御不超过30米的水位,需要工程费用8000元;
方案三:防御34米的最高水位,需要工程费用20000元.
试问哪种方案更好,请说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
已知随机变量,且,则______.
当前题号:10 | 题型:填空题 | 难度:0.99