- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).
表1:
规定:每项测试合格得5分,不合格得0分.
(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.
①设抽取的这10名职工中,每名职工测试合格的项数为
,根据上面的测试结果统计表,列出
的分布列,并估计这120名职工的平均得分;
②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;
(2)已知在测试中,测试难度的计算公式为
,其中
为第
项测试难度,
为第
项合格的人数,
为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):
表2:
定义统计量
,其中
为第
项的实测难度,
为第
项的预测难度(
).规定:若
,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:
表3:
判断本次测试的难度预估是否合理.
表1:
编号\测试项目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
规定:每项测试合格得5分,不合格得0分.
(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.
①设抽取的这10名职工中,每名职工测试合格的项数为


②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;
(2)已知在测试中,测试难度的计算公式为






表2:
测试项目 | 1 | 2 | 3 | 4 | 5 |
实测合格人数 | 8 | 8 | 7 | 7 | 2 |
定义统计量







表3:
测试项目 | 1 | 2 | 3 | 4 | 5 |
预测前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判断本次测试的难度预估是否合理.
已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是
,女生闯过一至四关的概率依次是
.
(1)求男生闯过四关的概率;
(2)设
表示四人冲关小组闯过四关的人数,求随机变量
的分布列和期望.


(1)求男生闯过四关的概率;
(2)设


小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在
时,日平均派送量为
单.
若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为
(单位:元),试分别求出甲、乙两种方案的日薪
的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
,
,
,
,
,
,
,
,
)
(1)请分别求出甲、乙两种薪酬方案中日薪


(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在



若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为


②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:









某大型商场2019年元旦期间累计生成
万张购物单,现从中随机抽取
张,并对抽出的每张单消费金额统计得到下表:
注:由于工作人员失误,后两栏数据无法辨识,只分别用字母
代替,不过工作人员清楚记得
的关系是
.
(1)求
的值;
(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过
元者,可抽奖一次.抽奖规则:从装有
个红球和
个黑球(
个球大小、材质完全相同)的不透明口袋中随机摸出
个小球;记两种颜色小球数量差的绝对值为
;当
时,消费者可获得价值
元的购物券,当
时,消费者可获得价值
元购物券,当
时,消费者可获得
元购物券.求参与抽奖的消费者获得购物券价值
的分布列及数学期望.


消费金额(单位:元) | ![]() | ![]() | ![]() | ![]() | ![]() |
购物单张数 | 25 | 25 | 30 | a | b |
注:由于工作人员失误,后两栏数据无法辨识,只分别用字母



(1)求

(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过













根据某水文观测点的历史统计数据,得到某河流水位
(单位:米)的频率分布直方图如下.将河流水位在
,
,
,
,
,
,
各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.

(1)求未来4年中,至少有2年该河流水位
的概率(结果用分数表示).
(2)已知该河流对沿河
工厂的影响如下:当
时,不会造成影响;当
时,损失50000元;当
时,损失300000元.为减少损失,
工厂制定了三种应对方案.
方案一:不采取措施;
方案二:防御不超过30米的水位,需要工程费用8000元;
方案三:防御34米的最高水位,需要工程费用20000元.
试问哪种方案更好,请说明理由.









(1)求未来4年中,至少有2年该河流水位

(2)已知该河流对沿河





方案一:不采取措施;
方案二:防御不超过30米的水位,需要工程费用8000元;
方案三:防御34米的最高水位,需要工程费用20000元.
试问哪种方案更好,请说明理由.