某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法从甲、乙两组中共抽取3名工人进行技术考核.
(1)求从甲、乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工人的概率;
(3)记X表示抽取的3名工人中男工人人数,求X的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字的数学期望是2,则的方差是(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
今年学雷锋日,某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:
年级
相关人数
抽取人数
高一
99

高二
27

高三
18
2
 
(Ⅰ)求的值;
(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;
(Ⅲ)若4名教师可去三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点的人数为,求随机变量的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务,若用表示抽取的志愿者中女生的人数,则随机变量的数学期望的值是______.(结果用分数表示)
当前题号:4 | 题型:填空题 | 难度:0.99
有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组
   
   
   
   
   
频数
10
15
45
20
10
 
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;
(2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.
附: ,则.
当前题号:5 | 题型:解答题 | 难度:0.99
有两种理财产品,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果
获利
不赔不赚
亏损
概率



 
产品
投资结果
获利
不赔不赚
亏损
概率



 
注:
(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.
当前题号:6 | 题型:解答题 | 难度:0.99
一个不透明袋中放有大小、形状均相同的小球,其中红球个、黑球个,现随机等可能取出小球.当有放回依此取出两个小球时,记取出的红球数为,则______;若第一次取出一个小球后,放入一个红球和一个黑球,再第二次随机取出一个小球.记取出的红球总数为,则______.
当前题号:7 | 题型:填空题 | 难度:0.99
,随机变量的分布列如表所示,则当内增大时,(   )

0
1
2




 
A.增大B.减小
C.先增大,后减小D.先减小,后增大
当前题号:8 | 题型:单选题 | 难度:0.99
从一批次品率为0.02的产品中有放回地抽取100次,每次抽取一件产品,设表示抽到的次品件数,则方差__________.
当前题号:9 | 题型:填空题 | 难度:0.99
2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:
 
第一趟列车
第二趟列车
发车时间
7:10
7:30
7:50
8:10
8:30
8:50
概率
0.2
0.3
0.5
0.2
0.3
0.5
 
若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).
(1)求小王候车10分钟且小李候车30分钟的概率;
(2)设小李候车所需时间为随机变量,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99