- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,
盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽” 或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡
即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,
从盒中抽取两张都是“世博会会徽“卡的概率是
,求抽奖者获奖的概率;
(2)现有甲、乙、丙、丁四人依次抽奖,用
表示获奖的人数,求
的分布列及
的值.
盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽” 或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡
即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,
从盒中抽取两张都是“世博会会徽“卡的概率是

(2)现有甲、乙、丙、丁四人依次抽奖,用



某投篮游戏规定:每轮至多投三次,直到首次命中为止.第一次就投中,得
分;第一次不中且第二次投中,得
分;前两次均不中且第三次投中,得
分;三次均不中,得
分.若某同学每次投中的概率为
,则他每轮游戏的得分
的数学期望为______ .






甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若
用x、y、z表示甲胜的概率;
(2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若

(2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
一个人随机的将编号为1,2,3,4的四个小球放入编 号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为
,则
的期望
= ▲ .




一个口装中有编号为1、2、3、4、5的五个大小形状完全一样的小球,现从袋中同时摸出3个小球,用随机变量
表示摸出的3个球中的最大号码数,则随机变量
的数学期望



一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,
,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab的最大值为 ( )

A.![]() | B.![]() | C.![]() | D.![]() |