- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级.每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格.设各教室的空气质量相互独立,且每次检测的结果也相互独立.根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为
.
(Ⅰ)在该市的教室中任取一间,估计该间教室的空气质量合格的概率;
(Ⅱ)如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为X,并以空气质量为A级的频率作为空气质量为A级的概率,求X的分布列及期望.

(Ⅰ)在该市的教室中任取一间,估计该间教室的空气质量合格的概率;
(Ⅱ)如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为X,并以空气质量为A级的频率作为空气质量为A级的概率,求X的分布列及期望.
在一次全国高中五省大联考中,有
万名学生参加,考后对所有学生成绩统计发现,英语成绩服从正态分布
.用茎叶图列举了
名学生的英语成绩,巧合的是这
个数据的平均数和方差恰好比所有
万个数据的平均数和方差都多
,且这
个数据的方差为
.

(1)求
;
(2)给出正态分布的数据:

①若从这
万名学生中随机抽取
名,求该生英语成绩在
的概率;
②若从这
万名学生中随机抽取
万名,记
为这
万名学生中英语成绩在
的人数,求
的数学期望.









(1)求

(2)给出正态分布的数据:


①若从这



②若从这






甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生.高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.
(1)求甲,乙,丙三人中只有一人通过审核的概率;
(2)设甲,乙,丙三人中获得自主招生入选资格的人数为
,求随机变量
的期望.
(1)求甲,乙,丙三人中只有一人通过审核的概率;
(2)设甲,乙,丙三人中获得自主招生入选资格的人数为


如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为:
商场经销该商品,可采用不同形式的分期付款,付款的期数
(单位:
)与商场经销一件商品的利润
(单位:元)满足如下关系:
(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为
,试求事件
的概率
;
(Ⅱ)求商场经销一件商品的利润
的分布列及期望
.

![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销该商品,可采用不同形式的分期付款,付款的期数




(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为



(Ⅱ)求商场经销一件商品的利润


医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标
和V.现有
三种不同配方的药剂,根据分析,
三种药剂能控制H指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别是0.6,0.5,0.4,能否控制H指标与能否控制V指标之间相互没有影响.
(Ⅰ)求
三种药剂中恰有一种能控制H指标的概率;
(Ⅱ)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.



(Ⅰ)求

(Ⅱ)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.
环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数),现随机抽取20天的指数(见下表),将指数不低于
视为当天空气质量优良.
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用
表示抽到空气质量为优良的天数,求
的分布列及数学期望.

天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空气质量指数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空气质量指数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用


为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:
(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.
微信群数量 | 频数 | 频率 |
0至5个 | 0 | 0 |
6至10个 | 30 | 0.3 |
11至15个 | 30 | 0.3 |
16至20个 | a | c |
20个以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.