某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过 关者奖励件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.

(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;

(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;

(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.

当前题号:1 | 题型:解答题 | 难度:0.99
因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.
(1)求两年后柑桔产量恰好达到灾前产量的概率;
(2)求两年后柑桔产量超过灾前产量的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
甲、乙两颗卫星同时独立的监测某一台风,在同一时段内,甲、乙预报台风准确的概率分别为,在该时段内至少有一颗卫星预报台风准确的概率为_____________(结果用分数表示)。
当前题号:3 | 题型:填空题 | 难度:0.99
某班甲,乙,丙的三名同学竞选班委,甲当选的概率,乙当选的概率为,丙当选项的概率为,则至多两人当选的概率为 .
当前题号:4 | 题型:填空题 | 难度:0.99
甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击.①求前3次射击中甲恰好击中2次的概率____________;②求第4次由甲射击的概率________.
当前题号:5 | 题型:填空题 | 难度:0.99
了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为)拟参加挑选,且每人能通过体能、射击、爆破的概率分别为.这三项测试能否通过相互之间没有影响.
(1)求能够入选的概率;     
(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).
当前题号:6 | 题型:解答题 | 难度:0.99
现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得﹣1分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击,则该射手得3分的概率为________.
当前题号:7 | 题型:填空题 | 难度:0.99
甲、乙、丙人投篮,投进的概率分别为,现人各投篮次,是否投进互不影响,则人都投进的概率为(  ).
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
甲、乙两人进行三打二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为
A.0.36B.0.216C.0.432D.0.648
当前题号:9 | 题型:单选题 | 难度:0.99
在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是,甲、乙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.设每人回答问题正确与否相互独立的.
(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.
当前题号:10 | 题型:解答题 | 难度:0.99