- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- + 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷
广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元
不足1小时的部分按1小时计算
甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为
;一小时以上且不超过两小时还车的概率分别为
;两人租车时间都不会超过三小时.
Ⅰ
求甲、乙两人所付租车费用相同的概率;
Ⅱ
设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.












实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).
⑴试求甲打完5局才能取胜的概率.
⑵按比赛规则甲获胜的概率
⑴试求甲打完5局才能取胜的概率.
⑵按比赛规则甲获胜的概率
甲乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)2人都射中目标的概率;
(2)2人中恰有1人射中目标的概率;
(3)2人至少有1人射中目标的概率。
(1)2人都射中目标的概率;
(2)2人中恰有1人射中目标的概率;
(3)2人至少有1人射中目标的概率。






两个人射击,甲射击一次中靶概率是
,乙射击一次中靶概率是
.
(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?


(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
甲、乙两名运动员进行乒乓球单打比赛,已知每一局甲胜的概率为
.比赛采用“五局三胜(即有一方先胜3局即获胜,比赛结束)制”,则甲
获胜的概率是____.


小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为
,小明投篮命中的概率为
,且两人投篮相互独立,则小明获胜的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
2017年3月智能共享单车项目正式登陆某市,两种车型
“小绿车”、“小黄车”
采用分时段计费的方式,“小绿车”每30分钟收费
元
不足30分钟的部分按30分钟计算
;“小黄车”每30分钟收费1元
不足30分钟的部分按30分钟计算
有甲、乙、丙三人相互独立的到租车点租车骑行
各租一车一次
设甲、乙、丙不超过30分钟还车的概率分别为
,
,
,三人租车时间都不会超过60分钟
甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2
设甲、乙、丙三人所付的费用之和为随机变量
,求
的分布列和数学期望.


















本着健康、低碳的生活理念,租用公共自行车骑行的人越来越多.某种公共自行车的租用收费标准为:每次租车不超过1小时免费,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).甲、乙两人相互独立来租车,每人各租1辆且租用1次.设甲、乙不超过1小时还车的概率分别为
和
;1小时以上且不超过2小时还车的概率分别为
和
;两人租车时间都不会超过3小时.
(1) 求甲、乙两人所付租车费用相同的概率;
(2) 记甲、乙两人所付的租车费用之和为随机变量
,求
的分布列和数学期望
.




(1) 求甲、乙两人所付租车费用相同的概率;
(2) 记甲、乙两人所付的租车费用之和为随机变量


