- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=( )
A.![]() | B.![]() |
C.![]() | D.![]() |
某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率.
为考察某种药物预防疾病的效果,科研人员进行了动物试验,结果如下表:
| 患病 | 未患病 | 总计 |
服用药 | 10 | 45 | 55 |
未服药 | 20 | 30 | 50 |
总计 | 30 | 75 | 105 |
在服药的前提下,未患病的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
下列说法正确的是________.
①某同学投篮命中率为0.6,他10次投篮中命中的次数ξ是一个随机变量,且ξ~B(10,0.6);
②某福彩的中奖概率为p,某人一次买了8张,中奖张数ξ是一个随机变量,且ξ~B(8,p);
③从装有5个红球5个白球的袋中,有放回的摸球,直到摸出白球为止,则摸球次数ξ是随机变量,且
.
①某同学投篮命中率为0.6,他10次投篮中命中的次数ξ是一个随机变量,且ξ~B(10,0.6);
②某福彩的中奖概率为p,某人一次买了8张,中奖张数ξ是一个随机变量,且ξ~B(8,p);
③从装有5个红球5个白球的袋中,有放回的摸球,直到摸出白球为止,则摸球次数ξ是随机变量,且

设甲、乙、丙三位老人是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.