- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- + 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,飞镖的标靶呈圆盘形,圆盘被10等分,按如图所示染色为Ⅰ、Ⅱ、Ⅲ三部分,某人依次将若干支飞镖投向标靶,如果每次投射都是相互独立的.

(1)如果他投向标靶的飞镖恰有2支且都击中标靶,同时每支飞镖击中标靶的任意位置都是等可能的,求“第Ⅰ部分被击中2次或第Ⅱ部分被击中2次”的概率;
(2)如果他投向标靶的飞镖恰有4支,且他投射1支飞镖,击中标靶的概率为
,设
表示标靶被击中的次数,求
的分布列和数学期望.

(1)如果他投向标靶的飞镖恰有2支且都击中标靶,同时每支飞镖击中标靶的任意位置都是等可能的,求“第Ⅰ部分被击中2次或第Ⅱ部分被击中2次”的概率;
(2)如果他投向标靶的飞镖恰有4支,且他投射1支飞镖,击中标靶的概率为



已知随机变量ξ的分布列为
则P(ξ=3)=____________.
ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.16 | 0.22 | 0.24 | | 0.10 | 0.06 | 0.01 |
则P(ξ=3)=____________.
第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手
,再从全校征集出3位志愿者分别与
进行一场技术对抗赛,根据以往经验,
与这三位志愿者进行比赛一场获胜的概率分别为
,且各场输赢互不影响.
(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.




(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.
某食品集团生产的火腿按行业生产标准分成8个等级,等级系数
依次为1,2,3,…,8,其中
为标准
,
为标准
.已知甲车间执行标准
,乙车间执行标准
生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数
的概率分布列如下表,若
的数学期望E(X1)=6.4,求
,
的值;
(2)为了分析乙车间的等级系数
,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数
的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
的概率.







(1)已知甲车间的等级系数




X1 | 5 | 6 | 7 | 8 |
P | 0.2 | ![]() | ![]() | ![]() |
(2)为了分析乙车间的等级系数

用该样本的频率分布估计总体,将频率视为概率,求等级系数

(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
