某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
 
60分及以下
61~70分
71~80分
81~90分
91~100分
甲班(人数)
3
6
12
15
9
乙班(人数)
4
7
16
12
6
 
现规定平均成绩在80分以上(不含80分)的为优秀.
(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助;
(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如下表:则的值为( )












 
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
设随机变量的概率分布列为则(   )

1
2
3
4





 
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
已知离散型随机变量的概率分布列如下:

0
1
2
3
 
0.2
0.3
0.4
 
 
则实数等于(   )
A.0.5B.0.24C.0.1D.0.76
当前题号:4 | 题型:单选题 | 难度:0.99
已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
若随机变量的分布列如下表,且,则表中的值为_______.








 
当前题号:6 | 题型:填空题 | 难度:0.99
随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?
(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量表示抽到作为宣讲员的收入在元的人数,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
已知随机变量的分布列为








 
.
(1)求的值;
(2)若,求的值.
当前题号:8 | 题型:解答题 | 难度:0.99
学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:
教师评分(满分12分)
11
10
9
各分数所占比例



 
某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).
(1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望
(2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为“类解答”,记该同学6个题中得分为的题目个数为,计算事件“”的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)
300
500
概率
0.5
0.5
 
作物市场价格(元/kg)
6
10
概率
0.4
0.6
 

 

(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
当前题号:10 | 题型:解答题 | 难度:0.99